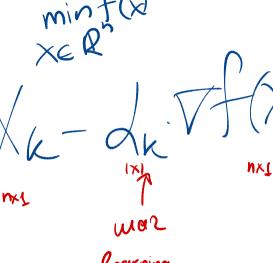


Let's consider a linear approximation of the differentiable function f along some direction $h, \|h\|_2 = 1$:

nxl



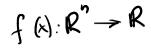
learning

 $f \to \min_{x,y,z}$ Gradient Descent

⊕ ດ ø

Let's consider a linear approximation of the differentiable function f along some direction $h, \|h\|_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$



Let's consider a linear approximation of the differentiable function f along some direction h, $||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$

We want \boldsymbol{h} to be a decreasing direction:

$$\alpha h) < f(x)$$

$$f(x) + \alpha \langle f'(x), h \rangle + o(\alpha) < f(x)$$

busupalu h:

Let's consider a linear approximation of the differentiable function f along some direction $h, ||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$

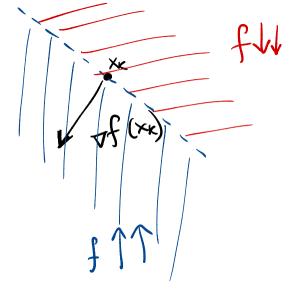
We want h to be a decreasing direction:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle f'(x), h \rangle + o(\alpha) \leq f(x)$$

and going to the limit at $\alpha \to 0$:

$$\langle f'(x), h \rangle \le 0$$



Let's consider a linear approximation of the differentiable function f along some direction h, $||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$

We want h to be a decreasing direction:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle f'(x), h \rangle + o(\alpha) < f(x)$$

and going to the limit at $\alpha \to 0$:

$$\langle f'(x), h \rangle \le 0$$

Also from Cauchy-Bunyakovsky-Schwarz inequality:

$$\begin{array}{c|c} \hline \\ \hline |\langle f'(x), h \rangle| & \|f'(x)\|_2 \|h\|_2 \\ \hline \langle f'(x), h \rangle & \geq -\|f'(x)\|_2 \|h\|_2 = -\|f'(x)\|_2 \\ \end{array}$$

Let's consider a linear approximation of the differentiable function f along some direction $h, ||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$

We want h to be a decreasing direction:

$$f(x + \alpha h) < f(x)$$

 $f(x) + \alpha \langle f'(x), h \rangle + o(\alpha) \langle f(x) \rangle$ and going to the limit at $\alpha \to 0$:

$$\langle f'(x), h \rangle \le 0$$

Also from Cauchy-Bunyakovsky-Schwarz inequality:

$$|\langle f'(x), h \rangle| \le ||f'(x)||_2 ||h||_2$$

 $\langle f'(x), h \rangle \ge -||f'(x)||_2 ||h||_2 = -||f'(x)||_2$

Thus, the direction of the antigradient

$$h = -\frac{f'(x)}{\|f'(x)\|_2}$$

gives the direction of the **steepest local** decreasing of the function f. $\langle \nabla f(x), h \rangle = \langle \nabla f(x), -\frac{\nabla f(x)}{\|\nabla f(x)\|} \rangle =$

$$f \to \min_{x,y,z}$$
 Gradient Descent

Let's consider a linear approximation of the differentiable function f along some direction h, $||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$

We want h to be a decreasing direction:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle f'(x), h \rangle + o(\alpha) < f(x)$$

and going to the limit at $\alpha \to 0$:

$$\langle f'(x), h \rangle \le 0$$

 ${\bf Also\ from\ Cauchy-Bunyakovsky-Schwarz\ inequality:}$

$$|\langle f'(x), h \rangle| \le ||f'(x)||_2 ||h||_2$$

 $\langle f'(x), h \rangle \ge -||f'(x)||_2 ||h||_2 = -||f'(x)||_2$

Thus, the direction of the antigradient

$$h = -\frac{f'(x)}{\|f'(x)\|_2}$$

gives the direction of the **steepest local** decreasing of the function f.

 $x_{k+1} = x_k - \alpha f'(x_k)$

Let's consider the following ODE, which is referred to as the Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t))$$

$$dx = \chi_{k+1} - \chi_{k}$$

$$dt = t - 0$$
(GF)

 $f \to \min_{x,y,z}$

Let's consider the following ODE, which is referred to as the Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t)) \tag{GF}$$

and discretize it on a uniform grid with α step:

$$\frac{x_{k+1} - x_k}{\alpha} = -f'(x_k),$$

$$X_{k+1} = X_k - \lambda \cdot f'(X_k)$$

 $f \to \min_{x,y}$

Let's consider the following ODE, which is referred to as the Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t)) \tag{GF}$$

and discretize it on a uniform grid with α step:

$$\frac{x_{k+1} - x_k}{\alpha} = -f'(x_k),$$

where $x_k \equiv x(t_k)$ and $\alpha = t_{k+1} - t_k$ - is the grid step.

From here we get the expression for x_{k+1}

$$x_{k+1} = x_k - \alpha f'(x_k),$$

which is exactly gradient descent.

Open In Colab 🐥

 $f \to \min_{x,y,z}$ Gradient Descent

Let's consider the following ODE, which is referred to as the Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t))$$

and discretize it on a uniform grid with α step:

$$\frac{x_{k+1} - x_k}{\alpha} = -f'(x_k),$$

where $x_k \equiv x(t_k)$ and $\alpha = t_{k+1} - t_k$ - is the grid step.

From here we get the expression for
$$x_{k+1}$$

 $x_{k+1} = x_k - \alpha f'(x_k),$

which is exactly gradient descent.

Open In Colab 🌲

$$\frac{dx}{dt} = -f'(x(t))^{(GF)}$$

$$f = \frac{1}{2} x^{2} A^{2}$$

$$t' = Ax$$

$$\frac{dx}{dx} - A \cdot x(t)$$

$$\frac{dx}{dt} = -ax(t)$$

$$x(t) = x \cdot exp(-at)$$

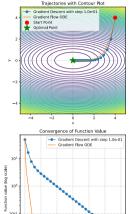
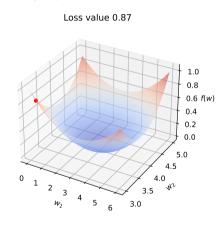
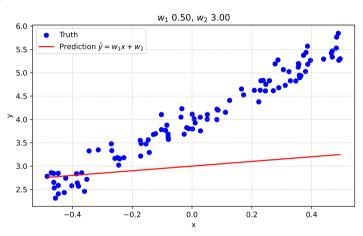


Figure 1: Gradient flow trajectory

Convergence of Gradient Descent algorithm

Heavily depends on the choice of the learning rate α :





search aka steepest descent
$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} \underbrace{f(x_k - \alpha \nabla f(x_k))} = \mathcal{A}$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is

HAUCKOPEN WAY

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

argmin $f(x_{k+1})$

argmin $f(x_{k+1})$

argmin $f(x_k)$

30190101

XK+1 = Xe- detf(Xx)

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

$$(3)$$

Optimality conditions:

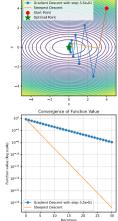
$$\frac{\partial f}{\partial x_{k+1}} \cdot \frac{\partial x_{k+1}}{\partial x} = 0$$

$$\nabla f(x_{k+1}) \cdot \left(-\nabla f(x_k) \right) = 0$$

 $f \to \min_{x,y,z}$

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:



Trajectories with Contour Plot

Figure 2: Steepest Descent

Open In Colab 🌲

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Optimality conditions:

$$\nabla f(x_{k+1})^{\top} \nabla f(x_k) = 0$$

$$\left(A \left(x_k - A x_k \right) A x_k = 0 \right)$$

$$\left(x_k - A y_k \right)^{\top} A^{\top} g_k = 0$$

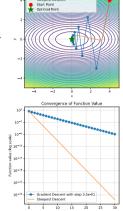
$$\left(x_k - A y_k \right)^{\top} A^{\top} g_k = 0$$

$$\left(x_k - A y_k \right)^{\top} A^{\top} g_k = 0$$

$$\left(x_k - A y_k \right)^{\top} A^{\top} g_k = 0$$

$$\left(x_k - A y_k \right)^{\top} A^{\top} g_k = 0$$

$$\left(x_k - A y_k \right)^{\top} A^{\top} g_k = 0$$



gr = A Xx

Trajectories with Contour Plot

Figure 2: Steepest Descent

Open In Colab 🜲

Strongly convex quadratics

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

Herma zagara:

npoahanusup.

ex-76 GD

gns

େ ଚ

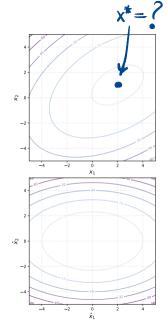
Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

• Firstly, without loss of generality we can set c=0, which will or affect optimization process. $(x^*)=0$

$$Ax^4 - b = 0$$

$$=>$$
 $\chi^{1}=$ A^{-1}



Strongly convex quadratics

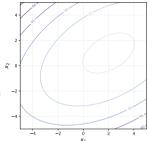
Consider the following quadratic optimization problem:

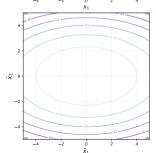
$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- ullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

COSCIE POISA MATPUYEN





େ♥େଉ

Consider the following quadratic optimization problem:

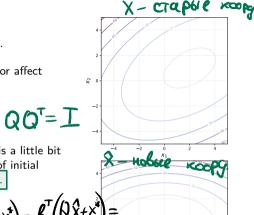
$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

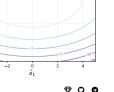
- Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can exit the bordinates to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$ where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(x) = \pm x^T A x - \theta^T x = \pm (Q \hat{x} + x^T)^T A (Q \hat{x} + x^T) - \theta^T (Q \hat{x} + x^T) =$$





Strongly convex quadratics

Consider the following quadratic optimization problem:

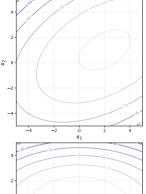
$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

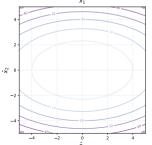
- \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A (Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$





⊕ 0 0

Consider the following quadratic optimization problem:

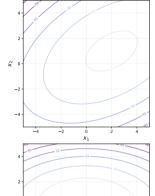
$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

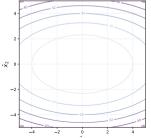
- \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- ullet Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} \underbrace{(Q\hat{x} + x^*)^{\top} A(Q\hat{x} + x^*)}_{= \frac{1}{2} \hat{x}^T Q^T A Q \hat{x} + \underbrace{(x^*)^T A Q \hat{x}}_{= \frac{1}{2} (x^*)^T A(x^*)}^{\top} - b^T Q \hat{x} - b^T x^*$$





Consider the following quadratic optimization problem:

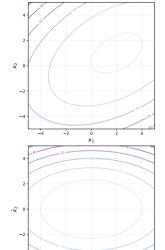
$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- ullet Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$\begin{split} f(\hat{x}) &= \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*) \\ &= \frac{1}{2} \hat{x}^T Q^T A Q \hat{x} + (x^*)^T A Q \hat{x} + \frac{1}{2} (x^*)^T A (x^*)^T - b^T Q \hat{x} - b^T x^* \\ &= \frac{1}{2} \hat{x}^T \Lambda \hat{x} \end{split}$$



Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k = (\mathbf{I} - \lambda \Lambda) X^k$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$\underbrace{x^{k+1}}_{x^{k+1}} = \underbrace{x^k - \alpha^k \nabla f(x^k)}_{(I - \alpha^k \Lambda) x^k} = \underbrace{(I - \alpha^k \Lambda) x^k}_{x^{k+1}} - \underbrace{(I - \lambda \Lambda)}_{x^{k+1}} \cdot \underbrace{x^{k+1}}_{x^{k+1}} = \underbrace{(I - \lambda \Lambda)}_{x^{k+1}} = \underbrace{(I - \lambda \Lambda)}_{x^{$$

Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^{k+1} = (1-lpha^k\lambda_{(i)})x_{(i)}^k$$
 For i -th coordinate

→ min x,y,z
Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \qquad \text{dx} = \text{const} = \text{d} \\ X^{k+1}_{(i)} &= \left(1 - \lambda^k \lambda_{(i)}\right)^k x^0_{(i)} \qquad \text{dx} = \text{const} = \text{d} \end{split}$$

$$X_{K+7}^! = \left(T - \Upsilon Y^{(!)}\right)_K X_o^{(!)}$$

 $f \to \min_{x,y,z}$ Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$
 Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that
$$\frac{\lambda_{\min} = \mu > 0}{\lambda_{\max} = L \ge \mu}$$
.

$$\begin{vmatrix} 1 - \lambda \mu \end{vmatrix} < 1 & | 1 - \lambda \mu | < 1 \\ -1 < 1 - \lambda \mu < 1 & -1 < 1 - \lambda \mu < 1 \\ -2 < -3\mu < 0 & -2 < -3\mu < 0 \\ 0 < \lambda \mu < 2 & 0 < \lambda \mu < 2 \end{vmatrix}$$

X KHI = (1-2x) X. 11-22/ <1 KAK BOID PATE

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \end{split}$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu$$
.

 $f \to \min_{x,y,z}$

Strongly convex quadratics

 $|1 - \alpha \mu| < 1$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$$
 For i -th coordinate
$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

$$|1 - \alpha \mu| < 1$$
$$-1 < 1 - \alpha \mu < 1$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

= $(I - \alpha^k \Lambda) x^k$
 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For i -th coordi

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})x_{(i)}^k$$
 For i -th coordinate $x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})^kx_{(i)}^0$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition: $a(\alpha) = \max_{\alpha \in A} |1 - \alpha| < 1$

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$

$$|1 - \alpha \mu| < 1$$

$$-1 < 1 - \alpha \mu < 1$$

$$\alpha < \frac{2}{\mu} \qquad \alpha \mu > 0$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

= $(I - \alpha^k \Lambda) x^k$
 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For i -th coordinate

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

$$\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

$$\begin{aligned} |1 - \alpha \mu| &< 1 & |1 - \alpha L| &< 1 \\ -1 &< 1 - \alpha \mu &< 1 \\ \alpha &< \frac{2}{\mu} & \alpha \mu &> 0 \end{aligned}$$

condition:

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x_{i+1}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coording}$$

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})x_{(i)}^k$$
 For i -th coordinate
$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})^kx_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition: $\rho(\alpha) = \max |1 - \alpha \lambda_{(i)}| < 1$

$$p(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

$$\alpha < \frac{2}{\mu} \qquad \alpha \mu > 0$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| <$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

$$|1 - \alpha \mu| < 1$$

$$-1 < 1 - \alpha \mu < 1$$

$$\alpha < \frac{2}{\mu}$$

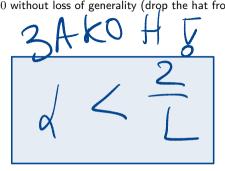
$$\alpha \mu > 0$$

$$|1 - \alpha L| < 1$$

$$-1 < 1 - \alpha L < 1$$

$$\alpha < \frac{2}{L}$$

$$\alpha L > 0$$



Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$$
 For i -th coordinate

$$x_{(i)}^{k-1}=(1-lpha^k\lambda_{(i)})x_{(i)}^k$$
 For i -th coordinate $x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})^kx_{(i)}^0$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$p(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

 $|1 - \alpha \mu| < 1 \qquad \qquad |1 - \alpha L| < 1$

$$\begin{array}{ll} -1<1-\alpha\mu<1 & -1<1-\alpha L<1 \\ \alpha<\frac{2}{\mu} & \alpha\mu>0 & \alpha<\frac{2}{L} & \alpha L>0 \\ \alpha<\frac{2}{T} \text{ is needed for convergence.} \end{array}$$

 $= (I - \alpha^k \Lambda) x^k$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x_{(i)}^{k+1} = (1-\alpha^k\lambda_{(i)})^kx_{(i)}^0$$
 Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:
$$\rho(\alpha) = \max_i |1-\alpha\lambda_{(i)}| < 1$$
 Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu$.

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For *i*-th coordinate

Now we would like to tune α to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha)$$

 $|1 - \alpha \mu| < 1 \qquad \qquad |1 - \alpha L| < 1$ $-1 < 1 - \alpha \mu < 1$ $-1 < 1 - \alpha L < 1$

$$\alpha < \frac{2}{\mu} \qquad \alpha \mu > 0 \qquad \qquad \alpha < \frac{2}{L} \qquad \alpha L > 0$$

 $\alpha < \frac{2}{L}$ is needed for convergence. $f \to \min_{x,y,z}$ Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{aligned} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{aligned}$$

Now we would like to tune α to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$

condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

$$i \qquad \qquad i \qquad i \qquad i \qquad i \qquad i \qquad i \qquad i \qquad \qquad i \qquad$$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

 $\alpha < \frac{2}{L}$ is needed for convergence.

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

$$< 1$$
 $- \alpha L < 1$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

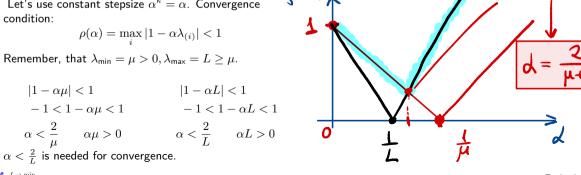
$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate}$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$
 Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:
$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$
 Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

Now we would like to tune α to choose the best (lowest) $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$ convergence rate $\rho^* = \min \rho(\alpha) = \min \max |1 - \alpha \lambda_{(i)}|$ $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For *i*-th coordinate $= \min_{\alpha} \{ |1 - \alpha \mu|, |1 - \alpha L| \}$



Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$egin{aligned} x^{k+1} &= x^k - lpha^k
abla f(x^k) = x^k - lpha^k \Lambda x^k \ &= (I - lpha^k \Lambda) x^k \ x^{k+1}_{(i)} &= (1 - lpha^k \lambda_{(i)}) x^k_{(i)} & ext{For i-th coordinate} \end{aligned}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

condition:
$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
-1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

$$\alpha < \frac{2}{\mu} \qquad \alpha \mu > 0 \qquad \qquad \alpha < \frac{2}{L} \qquad \alpha L > 0$$

$$\alpha < \frac{2}{T} \text{ is needed for convergence.}$$

Now we would like to tune α to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : 1 - \alpha^* \mu = \alpha^* L - 1$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

condition:
$$\rho(\alpha) = \max |1 - \alpha \lambda_{(i)}| < 1$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

Remember, that
$$\lambda_{\min}=\mu>0, \lambda_{\max}=L\geq\mu.$$

$$|1-\alpha\mu|<1 \qquad \qquad |1-\alpha L|<1$$

$$-1 < 1 - \alpha \mu < 1 \qquad -1 < 1 - \alpha L < 1$$

$$\alpha < \frac{2}{\mu} \quad \alpha \mu > 0 \qquad \alpha < \frac{2}{L} \quad \alpha L > 0$$

Now we would like to tune α to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L}$$

 $lpha < rac{2}{L}$ is needed for convergence.

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$egin{aligned} x^{k+1} &= x^k - lpha^k
abla f(x^k) = x^k - lpha^k \Lambda x^k \ &= (I - lpha^k \Lambda) x^k \ &x_{(i)}^{k+1} &= (1 - lpha^k \lambda_{(i)}) x_{(i)}^k ext{ For } i\text{-th coordinate} \end{aligned}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Let's use constant stepsize
$$\alpha^k=\alpha.$$
 Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

$$\alpha < \frac{2}{\mu} \qquad \alpha \mu > 0 \qquad \qquad \alpha < \frac{2}{L} \qquad \alpha L > 0$$

$$\alpha < \frac{2}{L} \quad \text{ is needed for convergence}.$$

Now we would like to tune α to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \qquad \rho^* = \frac{L - \mu}{L + \mu} \qquad = \qquad \frac{\mu}{\mu} - \frac{\mu}{\mu}$$

$$f \to \min_{x,y,z}$$
 Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \end{split}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

 $\alpha < \frac{2}{L}$ is needed for convergence.

Let's use constant stepsize
$$\alpha^k=\alpha$$
. Convergence condition:

 $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

 $\alpha < \frac{2}{t}$ $\alpha \mu > 0$ $\alpha < \frac{2}{t}$ $\alpha L > 0$

Now we would like to tune α to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$x^{k+1} = \left(\frac{L-\mu}{L+\mu}\right)^k x^0$$

 $f \to \min_{x,y,z}$ Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$egin{aligned} x^{k+1} &= x^k - lpha^k
abla f(x^k) = x^k - lpha^k \Lambda x^k \ &= (I - lpha^k \Lambda) x^k \ &x^{k+1}_{(i)} &= (1 - lpha^k \lambda_{(i)}) x^k_{(i)} & ext{For i-th coordinate} \end{aligned}$$

$$x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})^kx_{(i)}^0$$
 Let's use constant stepsize $\alpha^k=\alpha$. Convergence

condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$|1 - \alpha \mu| < 1 \qquad \qquad |1 - \alpha L| < 1$$

 $-1 < 1 - \alpha u < 1$ $-1 < 1 - \alpha L < 1$

Now we would like to tune α to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$

$$\alpha^*: \quad 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$\alpha<\frac{2}{\mu} \qquad \alpha\mu>0 \qquad \qquad \alpha<\frac{2}{L} \qquad \alpha L>0$$

$$\alpha<\frac{2}{L} \text{ is needed for convergence}.$$

So, we have a linear convergence in the domain with rate $\frac{\kappa-1}{\kappa+1}=1-\frac{2}{\kappa+1}$, where $\kappa=\frac{L}{\mu}$ is sometimes called condition number of the quadratic problem.

κ	ho	Iterations to decrease domain gap $10\ \mathrm{times}$	Iterations to decrease function gap $10\ \mathrm{times}$
1.1	0.05	1	1
2	0.33	3	2
5	0.67	6	3
10	0.82	12	6
50	0.96	58	29
100	0.98	116	58
500	0.996	576	288
1000	0.998	1152	576

Polyak-Lojasiewicz smooth case

Polyak-Lojasiewicz condition. Linear convergence of gradient descent without convexity

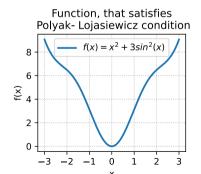
PL inequality holds if the following condition is satisfied for some $\mu > 0$,

$$\|\nabla f(x)\|^2 \ge 2\mu(f(x) - f^*) \quad \forall x$$

It is interesting, that the Gradient Descent algorithm might converge linearly even without convexity.

The following functions satisfy the PL condition but are not convex. PLink to the code

$$f(x) = x^2 + 3\sin^2(x)$$



Polyak-Loiasiewicz smooth case

Polyak-Lojasiewicz condition. Linear convergence of gradient descent without convexity

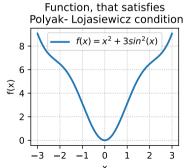
PL inequality holds if the following condition is satisfied for some $\mu > 0$,

$$\|\nabla f(x)\|^2 \ge 2\mu(f(x) - f^*) \quad \forall x$$

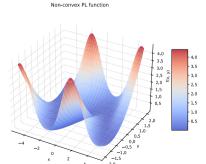
It is interesting, that the Gradient Descent algorithm might converge linearly even without convexity.

The following functions satisfy the PL condition but are not convex. Link to the code

$$f(x) = x^2 + 3\sin^2(x)$$



$$f(x,y) = \frac{(y - \sin x)^2}{2}$$



1 Theorem

Consider the Problem

$$f(x) \to \min_{x \in \mathbb{R}^d}$$

and assume that f is μ -Polyak-Lojasiewicz and L-smooth, for some $L \ge \mu > 0$.

Consider $(x^k)_{k\in\mathbb{N}}$ a sequence generated by the gradient descent constant stepsize algorithm, with a stepsize

satisfying $0 < \alpha \le \frac{1}{L}$. Then:

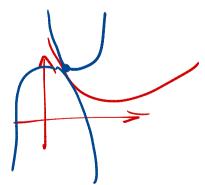
$$f(x^k) - f^* \le (1 - \alpha \mu)^k (f(x^0) - f^*).$$

We can use L-smoothness, together with the update rule of the algorithm, to write

1 Jag KOCTE

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} ||x^{k+1} - x^k||^2$$

nununyeba nepasona



Polyak-Lojasiewicz smooth case

We can use L-smoothness, together with the update rule of the algorithm, to write

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$
 nogatiously
$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

We can use L-smoothness, together with the update rule of the algorithm, to write

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

We can use L-smoothness, together with the update rule of the algorithm, to write

$$\begin{split} f(x^{k+1}) & \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\ & = f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2 \\ & = f(x) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2 \\ & \leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2, \end{split} \qquad \text{ any } \Delta b \in \mathcal{A}$$

 $f \to \min_{x,y,z}$

⊕ n ø

We can use L-smoothness, together with the update rule of the algorithm, to write

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$

oth case

We can use L-smoothness, together with the update rule of the algorithm, to write

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$

where in the last inequality we used our hypothesis on the stepsize that $\alpha L \leq 1$.

We can use L-smoothness, together with the update rule of the algorithm, to write

$$\begin{split} f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\ &= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2 \\ &= f(x^k) - \frac{\alpha}{2} \left(2 - L\alpha\right) \|\nabla f(x^k)\|^2 \\ &\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2, \\ &\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2, \end{split}$$
 where in the last inequality we used our hypothesis on the stepsize that $\alpha L \leq 1$.

The conclusion follows after subtracting f^* on both sides of this inequality and using recursion (1-dh)

 $f \to \min_{x,y,z}$ Polyak-Lojasiewicz smooth case

1 Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

Putting $y = x^*$:

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$

$$f(x^{\dagger}) = f$$

Polyak-Loiasiewicz smooth case

i Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL function.

Proof

By first order strong convexity criterion:

Polyak-Lojasiewicz smooth case

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{\mu}{2} ||y - x||_{2}^{2}$$

Putting
$$y = x^*$$
:
$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$

$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

i Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$

$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$= \left(\nabla f(x)^{-\frac{\mu}{2}} - \frac{\mu}{2} (x^* - x)\right)^T (x - x^*) =$$

i Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{\mu}{2} ||y - x||_{2}^{2}$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$= \left(\nabla f(x)^{T} - \frac{\mu}{2}(x^{*} - x)\right)^{T}(x - x^{*}) =$$

$$= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^{T} - \sqrt{\mu} (x^{*} - x) \right)^{T} \sqrt{\mu} (x - x^{*}) =$$

i Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{\mu}{2} ||y - x||_{2}^{2}$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$= \left(\nabla f(x)^{T} - \frac{\mu}{2}(x^{*} - x)\right)^{T}(x - x^{*}) =$$

$$= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^{T} - \sqrt{\mu} (x^{*} - x) \right)^{T} \sqrt{\mu} (x - x^{*}) =$$

i Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL function.

Proof

By first order strong convexity criterion:

Polyak-Loiasiewicz smooth case

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

Let $a = \frac{1}{\sqrt{n}} \nabla f(x)$ and

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$\frac{\mu}{2}||x^* - x||_2^2$$

$$= \left(\nabla f(x)^{T} - \frac{\mu}{2}(x^{*} - x)\right)^{T} (x - x^{*}) =$$

$$= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x) - \frac{2}{\sqrt{\mu}} (x - x^*) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x) - \frac{2}{\sqrt{\mu}} (x - x^*) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x) - \frac{2}{\sqrt{\mu}} (x - x) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x) - \frac{2}{\sqrt{\mu}} (x - x) \right)^T \sqrt{\mu} (x - x^*) = \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x) - \frac{2}{\sqrt{\mu}} (x - x) \right)^T \sqrt{\mu} (x - x)^T \sqrt{\mu} (x - x)^T$$

i Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

Putting $y = x^*$:

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$= \left(\nabla f(x)^{T} - \frac{\mu}{2}(x^{*} - x)\right)^{T}(x - x^{*}) =$$

$$= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^{T} - \sqrt{\mu}(x^{*} - x)\right)^{T} \sqrt{\mu}(x - x^{*}) =$$

Then $a+b=\sqrt{\mu}(x-x^*)$ and

Let $a = \frac{1}{\sqrt{\mu}} \nabla f(x)$ and $b = \sqrt{\mu}(x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x)$

$$a - b = \frac{2}{\sqrt{\mu}} \nabla f(x) - \sqrt{\mu}(x - x^*)$$

$$\leq \alpha^2 - \beta^2$$

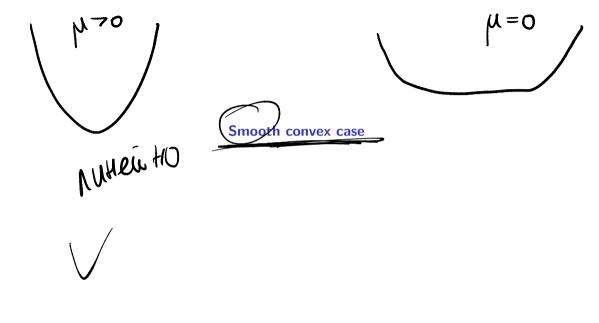
$$f(x) - f(x^*) \le \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu}(x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right)$$

$$\begin{array}{c}
\chi & = 100 \\
\chi & = 100 \\
f(x) - f(x^*) \leq \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu}(x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right) \\
f(x) - f(x^*) \leq \frac{1}{2\mu} \|\nabla f(x)\|_2^2, & = 2\mu \\
\left\| \nabla f(x) \right\|_2^2 = 2\mu \left(f - f^* \right)
\end{array}$$

$$f(x) - f(x^*) \le \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu} (x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right)$$
$$f(x) - f(x^*) \le \frac{1}{2\mu} \|\nabla f(x)\|_2^2,$$

$$f(x) - f(x^*) \le \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu} (x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right)$$
$$f(x) - f(x^*) \le \frac{1}{2\mu} \|\nabla f(x)\|_2^2,$$

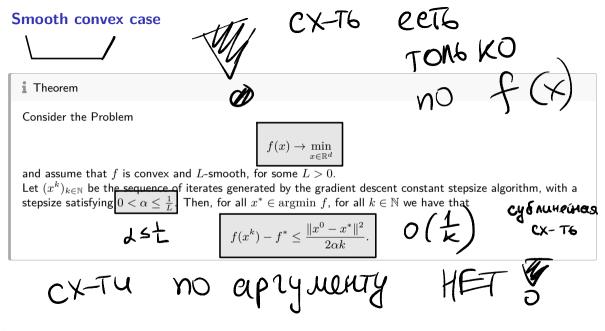
which is exactly the PL condition. It means, that we already have linear convergence proof for any strongly convex function.



 $f \to \min_{x,y,z}$

Smooth convex case

♥ O 0 17



 $J \to \min_{x,y,z}$ Smooth convex case

େ ମେ 🕈

• As it was before, we first use smoothness:

As it was before, we first use smoothness:
$$\begin{array}{lll} \text{MOHOTOHHOCT6} & f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\ \text{CD} & \text{npu npallulary} & f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\ \text{CD} & \text{npu npallulary} & f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2 \\ \text{CD} & \text{npu npallulary} & \text{constant} &$$

lypically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence. That is why we often will use $\alpha = \frac{1}{L}$.

 $f(x^k) - f(x^{k+1}) \ge \frac{1}{2L} \|\nabla f(x^k)\|^2 \text{ if } \alpha \le \frac{1}{L}$ f (xm3) < f(xx) - = (2-Ld) ||vf(xx)||2 f(x)-f(xx) > (2-Ld)) [7 (xx)]

• As it was before, we first use smoothness:

$$f(x^{k+1}) \leq f(x^{k}) + \langle \nabla f(x^{k}), x^{k+1} - x^{k} \rangle + \frac{L}{2} \|x^{k+1} - x^{k}\|^{2}$$

$$= f(x^{k}) - \alpha \|\nabla f(x^{k})\|^{2} + \frac{L\alpha^{2}}{2} \|\nabla f(x^{k})\|^{2}$$

$$= f(x^{k}) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^{k})\|^{2}$$

$$\leq f(x^{k}) - \frac{\alpha}{2} \|\nabla f(x^{k})\|^{2},$$
(1)

$$f(x^k) - f(x^{k+1}) \ge \frac{1}{2L} \|\nabla f(x^k)\|^2 \text{ if } \alpha \le \frac{1}{L}$$

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence.

That is why we often will use $\alpha = \frac{1}{4}$. After that we add convexity:

(2)

• As it was before, we first use smoothness:

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$
(1)

$$f(x^k) - f(x^{k+1}) \ge \frac{1}{2L} \|\nabla f(x^k)\|^2 \text{ if } \alpha \le \frac{1}{L}$$

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence.

That is why we often will use $\alpha = \frac{1}{L}$.

• After that we add convexity:

(2)

• As it was before, we first use smoothness:

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$
(1)

$$f(x^k) - f(x^{k+1}) \ge \frac{1}{2L} \|\nabla f(x^k)\|^2 \text{ if } \alpha \le \frac{1}{L}$$

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence. That is why we often will use $\alpha = \frac{1}{L}$.

• After that we add convexity:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle \text{ with } \underline{y = x^*, x = x^k}$$

$$f(x^*) \ge f(x^*) + \langle \nabla f(x^*), x^* - x^k \rangle$$
(2)

 $f \to \min_{x,y,z}$ Smooth convex case

⊕ ი

• As it was before, we first use smoothness:

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$

$$f(x^k) - f(x^{k+1}) \geq \frac{1}{2L} \|\nabla f(x^k)\|^2 \text{ if } \alpha \leq \frac{1}{L}$$
Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence. That is why we often will use $\alpha = \frac{1}{L}$.

After that we add convexity:
$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle \text{ with } y = x^*, x = x^k$$

$$f(x^k) - f^* \leq \langle \nabla f(x^k), x^k - x^* \rangle$$

F(x) < f'+ < \f(x*), x*-x*)

 $f \to \min_{x,y,z}$

y,z Smooth convex case

⊕ ი €

• Now we put Equation 2 to Equation 1:

• Now we put Equation 2 to Equation 1:

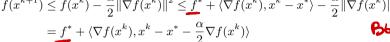
$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

min x,u,z Smooth convex case

Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \leq \underline{f}^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$



Now we put Equation 2 to Equation 1:

$$\begin{split} f(x^{k+1}) & \leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \leq f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \\ & = f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle \\ & = f^* + \frac{1}{2\alpha} \left\langle \alpha \nabla f(x^k), 2\left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k)\right) \right\rangle \end{split}$$

• Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2\alpha} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

Let $a = x^k - x^*$ and $b = x^k - x^* - \alpha \nabla f(x^k)$.

Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$f^* + \frac{1}{2} \int_{\mathbb{R}^n} \nabla f(x^k) \, \partial_x \left(e^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \, dx$$

$$= f + \langle \nabla f(x^*), x^* - x^* - \frac{1}{2} \nabla f(x^*) \rangle$$

$$= f^* + \frac{1}{2\alpha} \left\langle \alpha \nabla f(x^k), 2 \left(\frac{x^k - x^* - \frac{\alpha}{2} \nabla f(x^k)}{\mathbf{Q} + \mathbf{Q}} \right) \right\rangle$$

Let $a=x^k-x^*$ and $b=x^k-x^*-\alpha \nabla f(x^k)$. Then $a \Rightarrow b=\alpha \nabla f(x^k)$ and $a \Rightarrow b=2\left(x^k-x^*-\frac{\alpha}{2}\nabla f(x^k)\right)$.

$$2(x^{k}-x^{4})-\lambda \nabla f(x_{k})=0+6$$

Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

Let $a=x^k-x^*$ and $b=x^k-x^*-\alpha\nabla f(x^k)$. Then $a+b=\alpha\nabla f(x^k)$ and $a-b=2\left(x^k-x^*-\frac{\alpha}{2}\nabla f(x^k)\right)$.

Let
$$a = x^k - x^*$$
 and $b = x^k - x^* - \alpha \nabla f(x^k)$. Then $a + b = \alpha \nabla f(x^k)$ and $a - b = 2\left(x^k - x^* - \frac{\alpha}{2}\nabla f(x^k)\right)$
$$f(x^{k+1}) \le f^* + \frac{1}{2\alpha}\left[\|x^k - x^*\|_2^2 - \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2\right]$$

Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

$$\text{Let } a = x^k - x^* \text{ and } b = x^k - x^* - \alpha \nabla f(x^k). \text{ Then } a + b = \alpha \nabla f(x^k) \text{ and } a - b = 2\left(x^k - x^* - \frac{\alpha}{2}\nabla f(x^k)\right).$$

$$f(x^{k+1}) \leq f^* + \frac{1}{2\alpha}\left[\|x^k - x^*\|_2^2 - \sqrt{\|x^k - x^*\|_2^2} - \alpha \nabla f(x^k)\|_2^2\right]$$

Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2\alpha} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

Let $a=x^k-x^*$ and $b=x^k-x^*-\alpha\nabla f(x^k)$. Then $a+b=\alpha\nabla f(x^k)$ and $a-b=2\left(x^k-x^*-\frac{\alpha}{2}\nabla f(x^k)\right)$.

$$f(x^{k+1}) \le f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \right]$$

$$\le f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2 \right]$$

$$\frac{2\alpha \left(f(x^{k+1}) - f^*\right)}{2\alpha \left(f(x^{k+1}) - f^*\right)} \le \|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2$$

• Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2\alpha} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

Let $a = x^k - x^*$ and $b = x^k - x^* - \alpha \nabla f(x^k)$. Then $a + b = \alpha \nabla f(x^k)$ and $a - b = 2\left(x^k - x^* - \frac{\alpha}{2}\nabla f(x^k)\right)$.

$$f(x^{k+1}) \le f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \right]$$

$$\le f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2 \right]$$

$$2\alpha \left(f(x^{k+1}) - f^* \right) \le \|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2$$

• Now suppose, that the last line is defined for some index i and we sum over $i \in [0, k-1]$. Almost all summands will vanish due to the telescopic nature of the sum:

Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

Let $a=x^k-x^*$ and $b=x^k-x^*-\alpha\nabla f(x^k)$. Then $a+b=\alpha\nabla f(x^k)$ and $a-b=2\left(x^k-x^*-\frac{\alpha}{2}\nabla f(x^k)\right)$. $f(x^{k+1}) \le f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \right]$

 $\leq f^* + \frac{1}{2} \left[\|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2 \right]$

$$2\alpha\left(f(x^{k+1})-f^*\right)\leq \|x^k-x^*\|_2^2-\|x^{k+1}-x^*\|_2^2$$
 Now suppose, that the last line is defined for some index i and we sum over $i\in[0,k-1]$. Almost all summands will vanish due to the telescopic nature of the sum:

 $2\alpha \sum \left(f(x^{i+1}) - f^* \right) \le \|x^0 - x^*\|_2^2 - \|x^k - x^*\|_2^2$

$$f \to \min_{x,y,z}$$
 Smooth convex case

(3)

• Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

Let $a=x^k-x^*$ and $b=x^k-x^*-\alpha\nabla f(x^k)$. Then $a+b=\alpha\nabla f(x^k)$ and $a-b=2\left(x^k-x^*-\frac{\alpha}{2}\nabla f(x^k)\right)$.

$$f(x^{k+1}) \le f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \right]$$

$$\le f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2 \right]$$

$$2\alpha \left(f(x^{k+1}) - f^* \right) \le \|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2$$

• Now suppose, that the last line is defined for some index i and we sum over $i \in [0, k-1]$. Almost all summands will vanish due to the telescopic nature of the sum:

summands will vanish due to the telescopic nature of the sum:
$$2\alpha\sum_{i=0}^{k-1}\left(f(x^{i+1})-f^*\right)\leq\|x^0-x^*\|_2^2-\|x^0-x^*\|_2^2-\|x^0-x^*\|_2^2$$

• Due to the monotonic decrease at each iteration $f(x^{i+1}) < f(x^i)$:

$$kf(x^k) \leq \sum_{i=0}^{k-1} f(x^{i+1})$$

• Due to the monotonic decrease at each iteration $f(x^{i+1}) < f(x^i)$:

$$kf(x^k) \le \sum_{i=0}^{k-1} f(x^{i+1}) \implies f(x) \le \frac{\sum_{i=0}^{k-1} f(x^{i+1})}{K}$$

• Now putting it to Equation 3:

• Due to the monotonic decrease at each iteration $f(x^{i+1}) < f(x^i)$:

$$kf(x^k) \le \sum_{i=0}^{k-1} f(x^{i+1})$$

• Now putting it to Equation 3:

$$2\alpha k f(x^{k}) - 2\alpha k f^{*} \leq 2\alpha \sum_{i=0}^{k-1} \left(f(x^{i+1}) - f^{*} \right) \leq \|x^{0} - x^{*}\|_{2}^{2}$$

$$f(x^{k}) - f^{*} \leq \frac{\|x^{0} - x^{*}\|_{2}^{2}}{2d k}$$

$$\leq \frac{LR^{2}}{2k}$$

 $f \to \min_{x,y,z}$ Smooth convex case

⊕ ი ⊘

• Due to the monotonic decrease at each iteration $f(x^{i+1}) < f(x^i)$:

$$kf(x^k) \le \sum_{i=0}^{k-1} f(x^{i+1})$$

• Now putting it to Equation 3:

$$2\alpha k f(x^k) - 2\alpha k f^* \le 2\alpha \sum_{i=0}^{k-1} \left(f(x^{i+1}) - f^* \right) \le \|x^0 - x^*\|_2^2$$
$$f(x^k) - f^* \le \frac{\|x^0 - x^*\|_2^2}{2\alpha k}$$

• Due to the monotonic decrease at each iteration $f(x^{i+1}) < f(x^i)$:

$$kf(x^k) \le \sum_{i=0}^{k-1} f(x^{i+1})$$

• Now putting it to Equation 3:

$$\begin{split} 2\alpha k f(x^k) - 2\alpha k f^* &\leq 2\alpha \sum_{i=0}^{k-1} \left(f(x^{i+1}) - f^* \right) \leq \|x^0 - x^*\|_2^2 \\ f(x^k) - f^* &\leq \frac{\|x^0 - x^*\|_2^2}{2\alpha k} \leq \frac{L\|x^0 - x^*\|_2^2}{2k} & \text{7.7.9} \end{split}$$