

• Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.

Gradient Flow

⊕ ი

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n} \nabla f(x_0)^\top \delta x$$

s.t.
$$\delta x^{\top}\delta x = \varepsilon^2$$

େ ଚେଚ

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n}
abla f(x_0)^ op \delta x$$
 st $\delta x^ op \delta x = arepsilon^2$

The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a
plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

୍ କ୍ର ପ

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n}
abla f(x_0)^ op \delta x$$
 s.t. $\delta x^ op \delta x = arepsilon^2$

• The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n}
abla f(x_0)^ op \delta x$$
 st $\delta x^ op \delta x = arepsilon^2$

 The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

$$\begin{aligned} x_{k+1} &= x_k - \alpha_k \nabla f(x_k) \\ x_{k+1} - x_k &= -\alpha_k \nabla f(x_k) \end{aligned}$$

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n}
abla f(x_0)^ op \delta x$$
 st $\delta x^ op \delta x = arepsilon^2$

• The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

$$\begin{aligned} x_{k+1} &= x_k - \alpha_k \nabla f(x_k) \\ x_{k+1} - x_k &= -\alpha_k \nabla f(x_k) \\ \frac{x_{k+1} - x_k}{\alpha_k} &= -\nabla f(x_k) \end{aligned}$$

େଡେମେଡ

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n}
abla f(x_0)^ op \delta x$$
st $\delta x^ op \delta x = arepsilon^2$

• The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

$$\begin{array}{c} x_{k+1} = x_k - \alpha_k \nabla f(x_k) \\ x_{k+1} - x_k = -\alpha_k \nabla f(x_k) \\ \hline x_{k+1} - x_k \\ \hline \alpha_k \end{array} \longrightarrow \begin{array}{c} \mathbf{d} \times \\ \mathbf{d} + \mathbf{d} \times$$

ullet The gradient flow is essentially the limit of gradient descent when the step-size $lpha_k$ tends to zero

 $f \to \min_{x,y}$

♥ (

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n}
abla f(x_0)^ op \delta x$$
 st $\delta x^ op \delta x = arepsilon^2$

• The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

$$\begin{aligned} x_{k+1} &= x_k - \alpha_k \nabla f(x_k) \\ x_{k+1} - x_k &= -\alpha_k \nabla f(x_k) \\ \frac{x_{k+1} - x_k}{\alpha_k} &= -\nabla f(x_k) \end{aligned}$$

• The gradient flow is essentially the limit of gradient descent when the step-size α_k tends to zero

 $f \to \min_{x,y}$

⊕ ∩ **0**

$$\nabla f(x) = Ax$$

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n} \nabla f(x_0)^\top \delta x$$
s.t. $\delta x^\top \delta x = \varepsilon^2$

$$\frac{d \times \ell}{d t} - A \times \ell$$

• The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

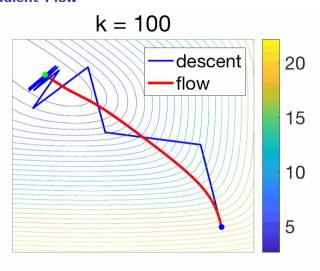
$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \quad \text{x(s)=x} \quad \text{x(t)} = ?$$

$$x_{k+1} - x_k = -\alpha_k \nabla f(x_k) \quad \text{x(t)=?}$$

$$\frac{x_{k+1} - x_k}{\alpha_k} = -\nabla f(x_k) \quad \text{at} = e^{At} \quad \text{x(s)=x}$$

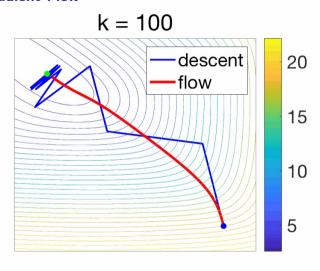
ullet The gradient flow is essentially the limit of gradient descent when the step-size $lpha_k$ tends to zero

 $f(x) \rightarrow \min_{\mathbf{x} \in \mathbb{R}^n} \frac{dx}{dt} = -\nabla f(x)$



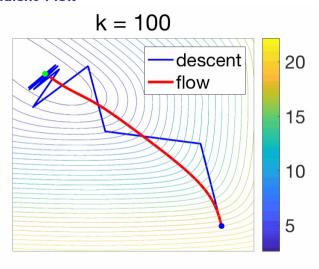
 Simplified analyses. The gradient flow has no step-size, so all the traditional annoying issues regarding the choice of step-size, with line-search, constant, decreasing or with a weird schedule are unnecessary.

Puc. 1: ■¶Source



- Simplified analyses. The gradient flow has no step-size, so all the traditional annoying issues regarding the choice of step-size, with line-search, constant, decreasing or with a weird schedule are unnecessary.
- Analytical solution in some cases. For example, one can consider quadratic problem with linear gradient, which will form a linear ODE with known exact formula.

♥೧0



- Simplified analyses. The gradient flow has no step-size, so all the traditional annoying issues regarding the choice of step-size, with line-search, constant, decreasing or with a weird schedule are unnecessary.
- Analytical solution in some cases. For example, one can consider quadratic problem with linear gradient, which will form a linear ODE with known exact formula.
- Different discretization leads to different methods. We will see, that the continuous-time object is pretty rich in terms of the variety of produced algorithms. Therefore, it is interesting to study optimization from this perspsective.

Consider Gradient Flow ODE:

$$\frac{dx}{dt} = -\nabla f(x)$$

Consider Gradient Flow ODE:

$$\frac{dx}{dt} = -\nabla f(x)$$

Explicit Euler discretization:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

Consider Gradient Flow ODE:

$$\frac{dx}{dt} = -\nabla f(x)$$

Explicit Euler discretization:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$\boxed{x_{k+1} = x_k - \alpha \nabla f(x_k)}$$

(GD)

Gradient Flow

େ ଚେ 💎

Consider Gradient Flow ODE:

$$\frac{dx}{dt} = -\nabla f(x)$$

Explicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

Implicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(\mathbf{x_{k+1}})$$

Leads to ordinary Gradient Descent method

$$\boxed{x_{k+1} = x_k - \alpha \nabla f(x_k)}$$

(GD)

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$\boxed{x_{k+1} = x_k - \alpha \nabla f(x_k)}$$

$$\frac{dx}{dt} = -\nabla f(x)$$

Implicit Euler discretization:

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \end{split}$$

(GD)

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$\boxed{x_{k+1} = x_k - \alpha \nabla f(x_k)}$$

$$\frac{dx}{dt} = -\nabla f(x)$$

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1})\\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0\\ \frac{x-x_k}{\alpha} &+ \nabla f(x)\Big|_{x=x_{k+1}} = 0 \end{split}$$
 (GD)

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$\boxed{x_{k+1} = x_k - \alpha \nabla f(x_k)}$$

$$\frac{dx}{dt} = -\nabla f(x)$$

Implicit Euler discretization:

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \\ \frac{x-x_k}{\alpha} &+ \nabla f(x) \Big|_{x=x_{k+1}} = 0 \\ \nabla \left[\frac{1}{2\alpha} \|x-x_k\|_2^2 + f(x) \right] \Big|_{x=x_{k+1}} = 0 \end{split}$$

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

$$\frac{dx}{dt} = -\nabla f(x)$$

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \\ \frac{x-x_k}{\alpha} &+ \nabla f(x)\Big|_{x=x_{k+1}} = 0 \\ \nabla \left[\frac{1}{2\alpha}\|x-x_k\|_2^2 + f(x)\right]\Big|_{x=x_{k+1}} = 0 \\ x_{k+1} &= \arg\min\left[f(x) + \frac{1}{2}\|x-x_k\|_2^2\right] \end{split}$$

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

$$\frac{dx}{dt} = -\nabla f(x)$$

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \\ \frac{x-x_k}{\alpha} &+ \nabla f(x)\Big|_{x=x_{k+1}} = 0 \\ \nabla \left[\frac{1}{2\alpha}\|x-x_k\|_2^2 + f(x)\right]\Big|_{x=x_{k+1}} = 0 \\ x_{k+1} &= \arg\min\left[f(x) + \frac{1}{2}\|x-x_k\|_2^2\right] \end{split}$$

Consider Gradient Flow ODE:

$$\frac{dx}{dt} = -\nabla f(x)$$

(GD)

Explicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

 $x_{k+1} = x_k - \overline{\alpha \nabla f(x_k)}$

Leads to ordinary Gradient Descent method

$$f(x)+r(x) \rightarrow \min_{x \in R} (x_k - d \nabla f(x_k))$$

$$GD \quad X_{k+1} = PROX_{dr}(x_k - d \nabla f(x_k))$$

$$x_{k}$$

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \\ \frac{x-x_k}{\alpha} &+ \nabla f(x) \Big|_{x=x_{k+1}} = 0 \end{split}$$

$$\begin{split} \nabla \left[\frac{1}{2\alpha} \|x - x_k\|_2^2 + f(x) \right] \Big|_{x = x_{k+1}} &= 0 \\ x_{k+1} &= \arg\min_{x \in \mathbb{R}^n} \left[f(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right] \end{split}$$

$$x_{k+1} = \mathsf{prox}_{\alpha f}(x_k)$$

1. Simplest proof of monotonic decrease of GF:

$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^\intercal \underbrace{\frac{dx(t)}{dt}} = -\|\nabla f(x(t))\|_2^2 \leqslant 0.$$

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where $\nabla f = 0$ (potentially including minima, maxima and saddle points).

Duayp-us GF

f(x) abnaeres pynkyueū

Anyhoba A gunyhoba

1. Simplest proof of monotonic decrease of GF:

$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^\top \frac{dx(t)}{dt} = -\|\nabla f(x(t))\|_2^2 \leqslant 0.$$

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where $\nabla f = 0$ (potentially including minima, maxima and saddle points).

2. If we additionaly have convexity:

$$f(x) \geqslant f(y) + \nabla f(y)^\top (x-y) \qquad \Rightarrow \qquad \nabla f(y)^\top (x-y) \leqslant f(x) - f(y)$$

1. Simplest proof of monotonic decrease of GF:

$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^{\intercal} \frac{dx(t)}{dt} = -\|\nabla f(x(t))\|_2^2 \leqslant 0.$$

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where abla f = 0 (potentailly including minima, maxima and saddle points).

2. If we additionally have convexity:

$$f(x) \geqslant f(y) + \nabla f(y)^\top (x-y) \qquad \Rightarrow \qquad \nabla f(y)^\top (x-y) \leqslant f(x) - f(y)$$

3. Finally, using convexity:

$$\frac{\frac{d}{dt}[\|x(t) - x^*\|^2]}{\frac{d}{dt}[\|x(t) - x^*\|^2]} = -2(x(t) - x^*)^\top \nabla f(x(t)) \leqslant -2[f(x(t)) - f^*]}{\frac{d}{dt}[\|x(t) - x^*\|^2]} = \frac{d(x(t) - x^*)}{dt} = -\nabla f$$

1. Simplest proof of monotonic decrease of GF:

Convex case. decrease of GF:
$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^{\top} \frac{dx(t)}{dt} = -\|\nabla f(x(t))\|_2^2 \leqslant 0.$$
 then $f(x(t))$ will always converge as a non-increasing function which is boundary.

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where $\nabla f = 0$ (potentially including minima, maxima and saddle points).

2. If we additionaly have convexity:

$$f(x) \geqslant f(y) + \nabla f(y)^\top (x-y) \qquad \Rightarrow \qquad \nabla f(y)^\top (x-y) \leqslant f(x) - f(y)$$

3. Finally, using convexity:

Leading to by integrating from 0 to t, and using the monotonicity of
$$f(x(t))$$
:

4. Leading to, by integrating from 0 to t, and using the monotonicity of f(x(t)):

$$\boxed{f(x(t)) - f^*} \leqslant \frac{1}{t} \int_0^t \left[f(x(u)) - f^* \right] du \leqslant \frac{1}{2t} \|x(0) - x^*\|^2 - \frac{1}{2t} \|x(t) - x^*\|^2 \leqslant \frac{1}{2t} \|x(0) - x^*\|^2. \leqslant \frac{1}{2t} \|x(0) - x^*\|^2 \right] \leqslant \frac{1}{2t} \|x(0) - x^*\|^2}$$

 $f \to \min_{x,y,z}$ Gradient Flow

1. Simplest proof of monotonic decrease of GF:

$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^{\top} \frac{dx(t)}{dt} = -\|\nabla f(x(t))\|_2^2 \leqslant 0.$$

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where $\nabla f=0$ (potentially including minima, maxima and saddle points).

2. If we additionaly have convexity:

$$f(x) \geqslant f(y) + \nabla f(y)^\top (x-y) \qquad \Rightarrow \qquad \nabla f(y)^\top (x-y) \leqslant f(x) - f(y)$$

3. Finally, using convexity:

$$\frac{d}{dt} [\|x(t) - x^*\|^2] = -2(x(t) - x^*)^\top \nabla f(x(t)) \leqslant -2[f(x(t)) - f^*]$$

4. Leading to, by integrating from 0 to t, and using the monotonicity of f(x(t)):

$$f(x(t)) - f^* \leqslant \frac{1}{t} \int_t^t \left[f(x(u)) - f^* \right] du \leqslant \frac{1}{2t} \|x(0) - x^*\|^2 - \frac{1}{2t} \|x(t) - x^*\|^2 \leqslant \frac{1}{2t} \|x(0) - x^*\|^2.$$

1. Simplest proof of monotonic decrease of GF:

$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^{\intercal} \frac{dx(t)}{dt} = -\|\nabla f(x(t))\|_2^2 \leqslant 0.$$

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where $\nabla f = 0$ (potentially including minima, maxima and saddle points).

2. If we additionally have convexity:

$$f(x) \geqslant f(y) + \nabla f(y)^\top (x-y) \qquad \Rightarrow \qquad \nabla f(y)^\top (x-y) \leqslant f(x) - f(y)$$

3. Finally, using convexity:

$$\frac{d}{dt}[\|x(t) - x^*\|^2] = -2(x(t) - x^*)^\top \nabla f(x(t)) \leqslant -2[f(x(t)) - f^*]$$

4. Leading to, by integrating from 0 to t, and using the monotonicity of f(x(t)):

$$f(x(t)) - f^* \leqslant \frac{1}{t} \int_t^t \big[f(x(u)) - f^* \big] du \leqslant \frac{1}{2t} \|x(0) - x^*\|^2 - \frac{1}{2t} \|x(t) - x^*\|^2 \leqslant \frac{1}{2t} \|x(0) - x^*\|^2.$$

We recover the usual rates in $\mathcal{O}\left(\frac{1}{k}\right)$, with $t = \alpha k$.

Convergence analysis. PL case.

1. The analysis is straightforward. Suppose, the function satisfies PL-condition:

$$\|\nabla f(x)\|^2 \geq 2\mu(f(x) - f^*) \quad \forall x$$

Convergence analysis. PL case.

1. The analysis is straightforward. Suppose, the function satisfies PL-condition:

$$\|\nabla f(x)\|^2 \geq 2\mu (f(x) - f^*) \quad \forall x$$

2. Then

$$\frac{d}{dt}[f(x(t)) - f(x^*)] = \nabla f(x(t))^{\top} \dot{x}(t) = -\|\nabla f(x(t))\|_{2}^{2} \leqslant -2\mu[f(x(t)) - f^*]$$

$$f(x(t)) - f(x^*) = \Psi$$

$$\frac{dx}{dt} \leqslant -2\mu X$$

$$\frac{d\Psi}{dt} \leqslant -2\mu Y$$

$$\varphi(t) \leqslant \Psi(0) \cdot e^{-2\mu t}$$

Convergence analysis. PL case.

1. The analysis is straightforward. Suppose, the function satisfies PL-condition:

$$\|\nabla f(x)\|^2 \geq 2\mu (f(x) - f^*) \quad \forall x$$

2. Then

$$\frac{d}{dt} \big[f(x(t)) - f(x^*) \big] = \nabla f(x(t))^\top \dot{x}(t) = \ - \| \nabla f(x(t)) \|_2^2 \leqslant \ - 2 \mu \big[f(x(t)) \ - f^* \big]$$

3. Finally,

$$f(x(t))-f^*\leqslant \exp(-2\mu t)\big[f(x(0))-f^*\big],$$

Accelerated Gradient Flow

Accelerated Gradient Flow

Remember one of the forms of Nesterov Accelerated Gradient

$$x_{k+1} = y_k - \alpha \nabla f(y_k)$$

$$y_k = x_k + \frac{k-1}{k+2}(x_k - x_{k-1})$$

2 rælgt

The corresponding ¹ ODE is:

$$\ddot{X}_t + \frac{3}{t}\dot{X}_t + \nabla f(X_t) = 0$$

Accelerated Gradient Flow

Define the energy

$$E(t) = t^2 \big(f(X(t)) - f^* \big) + 2 \Big\| X(t) - x^* + \tfrac{t}{2} \dot{X}(t) \Big\|^2.$$

A direct differentiation using the ODE yields $\dot{E}(t) < 0$ for all t > 0; hence E(t) is non-increasing. Because the second term is non-negative we obtain the convergence theorem

$$f(X(t)) - f^* \leq \frac{2 \|x_0 - x^*\|^2}{t^2} \ . \tag{AGF-rate}$$

Thus AGF enjoys the same $\mathcal{O}(1/t^2)$ rate that discrete NAG achieves in $\mathcal{O}(1/k^2)$ iterations. A similar argument with a restarted ODE gives an exponential rate for μ -strongly convex f.

How to model stochasticity in the continuous process? A simple idea would be $\frac{dx}{dt} = -\nabla f(x) + \xi$ with variety of options for ξ , for example $\xi \sim \mathcal{N}(0, \sigma^2) \sim \sigma^2 \mathcal{N}(0, 1)$.

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

 $dx(t) = -\nabla f(x(t)) dt + \sigma dW(t)$

Here W(t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic process cryz grop y sus, spojnoloka gbux. above in two possible ways:

• Watching the trajectories of x(t)

Stochastic Gradient Flow

How to model stochasticity in the continuous process? A simple idea would be: $\frac{dx}{dt} = -\nabla f(x) + \xi$ with variety of options for ξ , for example $\xi \sim \mathcal{N}(0, \sigma^2) \sim \sigma^2 \mathcal{N}(0, 1)$.

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

$$dx(t) = -\nabla f\left(x(t)\right)dt + \sigma dW(t)$$

Here W(t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic process above in two possible ways:

- Watching the trajectories of x(t)
- Watching the evolution of distribution density function of $\rho(t)$

How to model stochasticity in the continuous process? A simple idea would be: $\frac{dx}{dt} = -\nabla f(x) + \xi$ with variety of options for ξ , for example $\xi \sim \mathcal{N}(0, \sigma^2) \sim \sigma^2 \mathcal{N}(0, 1)$.

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

$$dx(t) = -\nabla f\left(x(t)\right)dt + \sigma dW(t)$$

Here W(t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic process above in two possible ways:

- Watching the trajectories of x(t)
- Watching the evolution of distribution density function of $\rho(t)$

How to model stochasticity in the continuous process? A simple idea would be: $\frac{dx}{dt} = -\nabla f(x) + \xi$ with variety of options for ξ , for example $\xi \sim \mathcal{N}(0, \sigma^2) \sim \sigma^2 \mathcal{N}(0, 1)$.

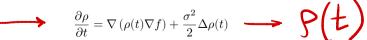
Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

$$dx(t) = -\nabla f\left(x(t)\right)dt + \sigma dW(t)$$

Here W(t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic process above in two possible ways:

- Watching the trajectories of x(t)
- Watching the evolution of distribution density function of $\rho(t)$

Fokker-Planck equation



• Francis Bach blog

Stochastic Gradient Flow

- Francis Bach blog
- Off convex Path blog

- Francis Bach blog
- Off convex Path blog
- Stochastic gradient algorithms from ODE splitting perspective

- Francis Bach blog
- Off convex Path blog
- Stochastic gradient algorithms from ODE splitting perspective
- NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer

- Francis Bach blog
- Off convex Path blog
- Stochastic gradient algorithms from ODE splitting perspective
- NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer
- Introduction to Gradient Flows in the 2-Wasserstein Space

- Francis Bach blog
- Off convex Path blog
- Stochastic gradient algorithms from ODE splitting perspective
- NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer
- Introduction to Gradient Flows in the 2-Wasserstein Space
- Stochastic Modified Equations and Dynamics of Stochastic Gradient Algorithms I: Mathematical Foundations

- Francis Bach blog
- Off convex Path blog
- Stochastic gradient algorithms from ODE splitting perspective
- NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer
- Introduction to Gradient Flows in the 2-Wasserstein Space
- Stochastic Modified Equations and Dynamics of Stochastic Gradient Algorithms I: Mathematical Foundations
- Understanding Optimization in Deep Learning with Central Flows

