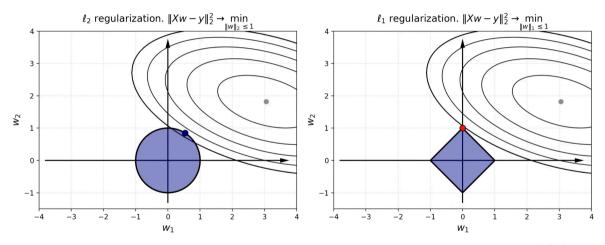






# $\ell_1$ -regularized linear least squares

# $\ell_1$ induces sparsity



@fminxyz



#### Norms are not smooth

$$\min_{x \in \mathbb{R}^n} f(x),$$

A classical convex optimization problem is considered. We assume that f(x) is a convex function, but now we do not require smoothness.

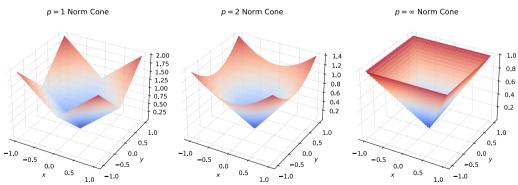
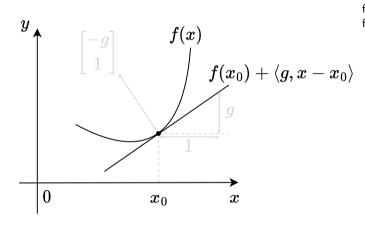


Figure 1: Norm cones for different p - norms are non-smooth

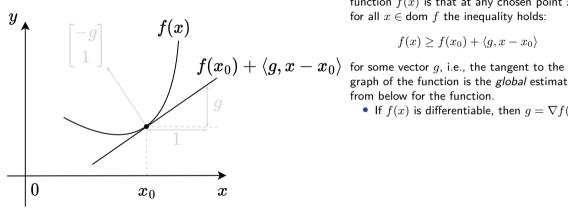
**♥ ೧ Ø** 



An important property of a continuous convex function f(x) is that at any chosen point  $x_0$ for all  $x \in \text{dom } f$  the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

Figure 2: Taylor linear approximation serves as a global lower bound for a convex function



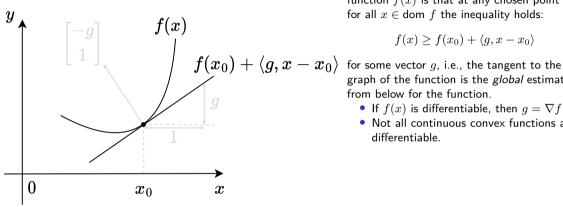
An important property of a continuous convex function f(x) is that at any chosen point  $x_0$ for all  $x \in \text{dom } f$  the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate • If f(x) is differentiable, then  $g = \nabla f(x_0)$ 

Figure 2: Taylor linear approximation serves as a global lower bound for a convex function

Subgradient and Subdifferential



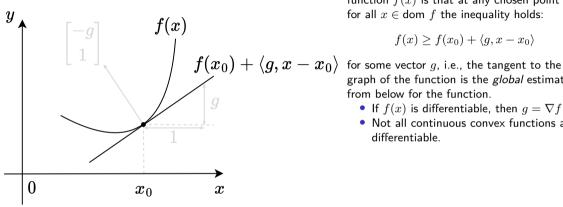
An important property of a continuous convex function f(x) is that at any chosen point  $x_0$ for all  $x \in \text{dom } f$  the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate from below for the function.

- If f(x) is differentiable, then  $g = \nabla f(x_0)$
- Not all continuous convex functions are differentiable.

Figure 2: Taylor linear approximation serves as a global lower bound for a convex function



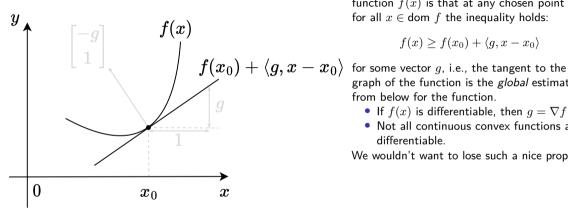
An important property of a continuous convex function f(x) is that at any chosen point  $x_0$ for all  $x \in \text{dom } f$  the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate from below for the function.

- If f(x) is differentiable, then  $g = \nabla f(x_0)$
- Not all continuous convex functions are differentiable.

Figure 2: Taylor linear approximation serves as a global lower bound for a convex function



An important property of a continuous convex function f(x) is that at any chosen point  $x_0$ for all  $x \in \text{dom } f$  the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate from below for the function. • If f(x) is differentiable, then  $g = \nabla f(x_0)$ 

- Not all continuous convex functions are
- differentiable.

We wouldn't want to lose such a nice property.

Figure 2: Taylor linear approximation serves as a global lower bound for a convex function

Subgradient and Subdifferential

A vector g is called the **subgradient** of a function  $f(x): S \to \mathbb{R}$  at a point  $x_0$  if  $\forall x \in S$ :

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

A vector g is called the **subgradient** of a function  $f(x): S \to \mathbb{R}$  at a point  $x_0$  if  $\forall x \in S$ :

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The set of all subgradients of a function f(x) at a point  $x_0$  is called the **subdifferential** of f at  $x_0$  and is denoted by  $\partial f(x_0)$ .

େଡ଼େଉ

A vector g is called the **subgradient** of a function  $f(x): S \to \mathbb{R}$  at a point  $x_0$  if  $\forall x \in S$ :

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The set of all subgradients of a function f(x) at a point  $x_0$  is called the **subdifferential** of f at  $x_0$  and is denoted by  $\partial f(x_0)$ .

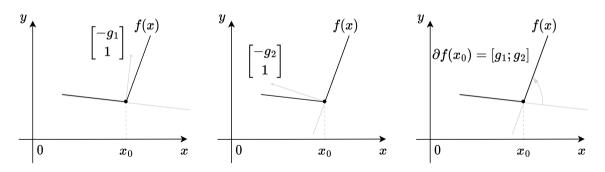
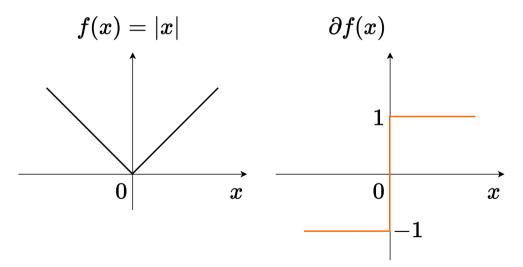


Figure 3: Subdifferential is a set of all possible subgradients

Find  $\partial f(x)$ , if f(x) = |x|

Find  $\partial f(x)$ , if f(x) = |x|



Subdifferential properties
• If  $x_0 \in \mathbf{ri}(S)$ , then  $\partial f(x_0)$  is a convex compact set.

- Subdifferential properties
   If  $x_0 \in \mathbf{ri}(S)$ , then  $\partial f(x_0)$  is a convex compact set.
  - The convex function f(x) is differentiable at the point  $x_0 \Rightarrow \partial f(x_0) = {\nabla f(x_0)}.$

- If  $x_0 \in \mathbf{ri}(S)$ , then  $\partial f(x_0)$  is a convex compact set.
- The convex function f(x) is differentiable at the point  $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If  $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$ , then f(x) is convex on S.

- If  $x_0 \in \mathbf{ri}(S)$ , then  $\partial f(x_0)$  is a convex compact set.
- The convex function f(x) is differentiable at the point  $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If  $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$ , then f(x) is convex on S.

Xagan T. 1

f Beck First - ORDER

Numerical

methods

→ min x.u.z Subgradient and Subdifferential

- If  $x_0 \in \mathbf{ri}(S)$ , then  $\partial f(x_0)$  is a convex compact set.
- The convex function f(x) is differentiable at the point  $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If  $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$ , then f(x) is convex on S.
- i Subdifferential of a differentiable function

Let  $f: S \to \mathbb{R}$  be a function defined on the set S in a Euclidean space  $\mathbb{R}^n$ . If  $x_0 \in \mathbf{ri}(S)$  and f is differentiable at  $x_0$ , then either  $\partial f(x_0) = \emptyset$  or  $\partial f(x_0) = \{\nabla f(x_0)\}$ . Moreover, if the function f is convex, the first scenario is impossible.

o coper

Subgradient and Subdifferential

- If  $x_0 \in \mathbf{ri}(S)$ , then  $\partial f(x_0)$  is a convex compact set.
- The convex function f(x) is differentiable at the
- point  $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If  $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$ , then f(x) is convex on S.
- i Subdifferential of a differentiable function

Let  $f: S \to \mathbb{R}$  be a function defined on the set S in a Euclidean space  $\mathbb{R}^n$ . If  $x_0 \in \mathbf{ri}(S)$  and f is differentiable at  $x_0$ , then either  $\partial f(x_0) = \emptyset$  or  $\partial f(x_0) = {\nabla f(x_0)}.$  Moreover, if the function f is convex, the first scenario is impossible.

#### Proof

1. Assume, that  $s \in \partial f(x_0)$  for some  $s \in \mathbb{R}^n$  distinct from  $\nabla f(x_0)$ . Let  $v \in \mathbb{R}^n$  be a unit vector. Because  $x_0$  is an interior point of S, there exists  $\delta > 0$  such that  $x_0 + tv \in S$  for all  $0 < t < \delta$ . By the definition of the subgradient, we have

- If  $x_0 \in \mathbf{ri}(S)$ , then  $\partial f(x_0)$  is a convex compact set.
- The convex function f(x) is differentiable at the
- point  $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If  $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$ , then f(x) is convex on S.
- i Subdifferential of a differentiable function

Let  $f: S \to \mathbb{R}$  be a function defined on the set S in a Euclidean space  $\mathbb{R}^n$ . If  $x_0 \in \mathbf{ri}(S)$  and f is differentiable at  $x_0$ , then either  $\partial f(x_0) = \emptyset$  or  $\partial f(x_0) = {\nabla f(x_0)}.$  Moreover, if the function f is convex, the first scenario is impossible.

#### Proof

1. Assume, that  $s \in \partial f(x_0)$  for some  $s \in \mathbb{R}^n$  distinct from  $\nabla f(x_0)$ . Let  $v \in \mathbb{R}^n$  be a unit vector. Because  $x_0$  is an interior point of S, there exists  $\delta > 0$  such that  $x_0 + tv \in S$  for all  $0 < t < \delta$ . By the definition of the subgradient, we have

- If  $x_0 \in \mathbf{ri}(S)$ , then  $\partial f(x_0)$  is a convex compact set. which implies: • The convex function f(x) is differentiable at the
- point  $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If  $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$ , then f(x) is convex on S.
- i Subdifferential of a differentiable function

convex, the first scenario is impossible.

Let 
$$f: S \to \mathbb{R}$$
 be a function defined on the set  $S$  in a Euclidean space  $\mathbb{R}^n$ . If  $x_0 \in \mathbf{ri}(S)$  and  $f$  is differentiable at  $x_0$ , then either  $\partial f(x_0) = \emptyset$  or  $\partial f(x_0) = \{\nabla f(x_0)\}$ . Moreover, if the function  $f$  is

#### Proof

1. Assume, that  $s \in \partial f(x_0)$  for some  $s \in \mathbb{R}^n$  distinct from  $\nabla f(x_0)$ . Let  $v \in \mathbb{R}^n$  be a unit vector. Because  $x_0$  is an interior point of S, there exists  $\delta > 0$  such

that  $x_0 + tv \in S$  for all  $0 < t < \delta$ . By the definition

$$\frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

for all  $0 < t < \delta$ . Taking the limit as t approaches 0 and using the definition of the gradient, we get:

$$\langle \nabla f(x_0), v \rangle = \lim_{t \to 0; 0 < t < \delta} \frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$
2. From this,  $\langle s - \nabla f(x_0), v \rangle \ge 0$ . Due to the arbitrariness of  $v$ , one can set

 $v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$ 

leading to  $s = \nabla f(x_0)$ .

of the subgradient, we have

- If  $x_0 \in \mathbf{ri}(S)$ , then  $\partial f(x_0)$  is a convex compact set. which implies:
- The convex function f(x) is differentiable at the point  $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If  $\partial f(x_0) \neq \emptyset$   $\forall x_0 \in S$ , then f(x) is convex on S.
- i Subdifferential of a differentiable function

convex, the first scenario is impossible.

Let 
$$f: S \to \mathbb{R}$$
 be a function defined on the set  $S$  in a Euclidean space  $\mathbb{R}^n$ . If  $x_0 \in \mathbf{ri}(S)$  and  $f$  is differentiable at  $x_0$ , then either  $\partial f(x_0) = \emptyset$  or

 $\partial f(x_0) = {\nabla f(x_0)}.$  Moreover, if the function f is

- Proof
  - 1. Assume, that  $s \in \partial f(x_0)$  for some  $s \in \mathbb{R}^n$  distinct from  $\nabla f(x_0)$ . Let  $v \in \mathbb{R}^n$  be a unit vector. Because  $x_0$  is an interior point of S, there exists  $\delta > 0$  such that  $x_0 + tv \in S$  for all  $0 < t < \delta$ . By the definition

$$\frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

for all  $0 < t < \delta$ . Taking the limit as t approaches 0 and

using the definition of the gradient, we get: 
$$\langle \nabla f(x_0), v \rangle = \lim_{t \to 0: 0 < t < \delta} \frac{f(x_0 + tv) - f(x_0)}{t} \geq \langle s, v \rangle$$

2. From this,  $\langle s - \nabla f(x_0), v \rangle > 0$ . Due to the arbitrariness of v, one can set

$$v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$$

leading to  $s = \nabla f(x_0)$ .

3. Furthermore, if the function f is convex, then according to the differential condition of convexity  $f(x) \geq f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$  for all  $x \in S$ . But

by definition, this means  $\nabla f(x_0) \in \partial f(x_0)$ .

of the subgradient, we have

i Question

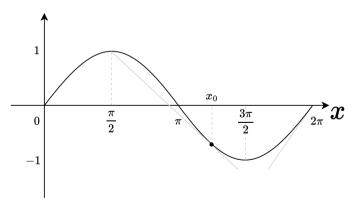
Is it correct, that if the function has a subdifferential at some point, the function is convex?



#### i Question

Is it correct, that if the function has a subdifferential at some point, the function is convex?

Find  $\partial f(x)$ , if  $f(x) = \sin x, x \in [\pi/2; 2\pi]$ 

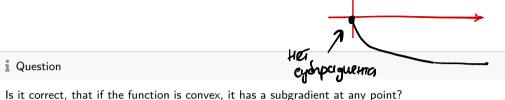


i Question

Is it correct, that if the function is convex, it has a subgradient at any point?







Convexity follows from subdifferentiability at any point. A natural question to ask is whether the converse is true: is every convex function subdifferentiable? It turns out that, generally speaking, the answer to this question is negative.

Let 
$$f:[0,\infty)\to\mathbb{R}$$
 be the function defined by  $f(x):=-\sqrt{x}$ . Then,  $\partial f(0)=\emptyset$ .

Assume, that  $s\in\partial f(0)$  for some  $s\in\mathbb{R}$ . Then, by definition, we must have  $sx\leq -\sqrt{x}$  for all  $x\geq 0$ . From this, we can deduce  $s\leq -\sqrt{1}$  for all x>0. Taking the limit as x approaches 0 from the right, we get  $s\leq -\infty$ , which is impossible.



relint (xeS/3Be(x) = aff(s))

I Moreau - Rockafellar theorem (subdifferential of a linear combination) Let  $f_i(x)$  be convex functions on convex sets  $S_i$ , i = $\overline{1,n}$ . Then if  $\bigcap^n \mathbf{ri}(S_i) \neq \emptyset$  then the function

 $f(x) = \sum\limits_{i=1}^{"} a_i f_i(x), \ a_i > 0$  has a subdifferential  $\partial_S f(x)$  on the set  $S = \bigcap^n S_i$  and

 $\partial_S f(x) = \sum a_i \partial_{S_i} f_i(x)$ 

Subgradient and Subdifferential

Moreau - Rockafellar theorem (subdifferential of a linear combination)

Let  $f_i(x)$  be convex functions on convex sets  $S_i, i = \overline{1, n}$ . Then if  $\bigcap_{n=1}^{n} \mathbf{ri}(S_i) \neq \emptyset$  then the function

$$f(x) = \sum_{i=1}^n a_i f_i(x), \ a_i > 0$$
 has a subdifferential

$$\partial_S f(x)$$
 on the set  $S = \bigcap_{i=1}^n S_i$  and

$$\partial_S f(x) = \sum_{i=1}^{n} a_i \partial_{S_i} f_i(x)$$

Dubovitsky - Milutin theorem (subdifferential of a point-wise maximum)

Let  $f_i(x)$  be convex functions on the open convex set  $S\subseteq\mathbb{R}^n,\ x_0\in S$ , and the pointwise maximum is defined as  $f(x)=\max_i f_i(x)$ . Then:

$$\partial_S f(x_0) = \mathbf{conv} \left\{ igcup_{i \in I(x_0)} \partial_S f_i(x_0) 
ight\}, \quad I(x) = \left\{ i \in I(x_0) \right\}$$



• 
$$\partial(\alpha f)(x) = \alpha \partial f(x)$$
, for  $\alpha \ge 0$ 



- $\partial(\alpha f)(x) = \alpha \partial f(x)$ , for  $\alpha \ge 0$
- $\partial(\sum_{i=1}^{n}f_{i})(x) = \sum_{i=1}^{n}\partial f_{i}(x)$ ,  $f_{i}$  convex functions



- $\partial(\alpha f)(x) = \alpha \partial f(x)$ , for  $\alpha > 0$
- $\partial(\sum f_i)(x) = \sum \partial f_i(x)$ ,  $f_i$  convex functions If g(x) = f(Ax) + b then  $\partial g(x) = A^T \partial f(Ax + b)$



- $\partial(\alpha f)(x) = \alpha \partial f(x)$ , for  $\alpha \ge 0$
- $\partial(\sum f_i)(x) = \sum \partial f_i(x)$ ,  $f_i$  convex functions
- If g(x) = f(Ax) + b then  $\partial g(x) = A^T \partial f(Ax + b)$
- $z \in \partial f(x)$  if and only if  $x \in \partial f^*(z)$ .



- $\partial(\alpha f)(x) = \alpha \partial f(x)$ , for  $\alpha \ge 0$
- $\partial(\sum f_i)(x) = \sum \partial f_i(x)$ ,  $f_i$  convex functions
- If g(x) = f(Ax) + b then  $\partial g(x) = A^T \partial f(Ax + b)$
- $z \in \partial f(x)$  if and only if  $x \in \partial f^*(z)$ .
- Let  $f: E \to \mathbb{R}$  be a convex function and  $g: \mathbb{R} \to \mathbb{R}$  be a nondecreasing convex function. Let  $x \in E$ , and suppose that g is differentiable at the point f(x). Let  $h = g \circ f$ . Then  $\partial h(x) = g'(f(x))\partial f(x)$ .



୍ କ୍ର ହ

# Connection to convex geometry

Convex set  $S \subseteq \mathbb{R}^n$ , consider indicator function  $I_S : \mathbb{R}^n \to \mathbb{R}$ ,

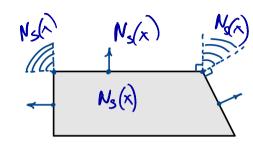
$$I_S(x) = I\{x \in S\} = \begin{cases} 0 & \text{if } x \in S \\ \infty & \text{if } x \notin S \end{cases}$$

For  $x \in S$ ,  $\partial I_S(x) = \mathcal{N}_S(x)$ , the **normal cone** of S at x is, recall

$$\mathcal{N}_S(x) = \{g \in \mathbb{R}^n : g^T x \ge g^T y \text{ for any } y \in S\}$$

**Why?** By definition of subgradient g,

$$I_S(y) \geq I_S(x) + g^T(y-x) \quad \text{for all } y$$
 • For  $y \notin S$ ,  $I_S(y) = \infty$ 



Subgradient and Subdifferential

# Connection to convex geometry

Convex set  $S\subseteq\mathbb{R}^n$ , consider indicator function  $I_S:\mathbb{R}^n\to\mathbb{R}$ ,

$$I_S(x) = I\{x \in S\} = \begin{cases} 0 & \text{if } x \in S \\ \infty & \text{if } x \notin S \end{cases}$$

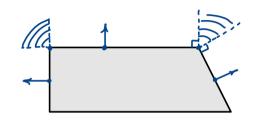
For  $x \in S$ ,  $\partial I_S(x) = \mathcal{N}_S(x)$ , the **normal cone** of S at x is, recall

$$\mathcal{N}_S(x) = \{ g \in \mathbb{R}^n : g^T x \ge g^T y \text{ for any } y \in S \}$$

Why? By definition of subgradient g,

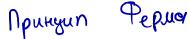
$$I_S(y) \ge I_S(x) + g^T(y - x)$$
 for all  $y$ 

- For  $y \notin S$ ,  $I_S(y) = \infty$
- For  $y \in S$ , this means  $0 \ge g^T(y-x)$





# **Optimality Condition**



For any f (convex or not),

$$f(x^*) = \min_{x} f(x) \iff 0 \in \partial f(x^*)$$

That is,  $x^*$  is a minimizer if and only if 0 is a subgradient of f at  $x^*$ . This is called the subgradient optimality condition.

Why? Easy: g=0 being a subgradient means that for all u

$$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$

Note the implication for a convex and differentiable function f, with

$$\partial f(x) = \{\nabla f(x)\}\$$



# **Derivation of first-order optimality**

Example of the power of subgradients: we can use what we have learned so far to derive the **first-order optimality condition**. Recall

$$\min_{x \in \mathcal{G}} f(x) \text{ subject to } x \in S$$
 solved at  $x$ , for  $f$  convex and differentiable, if and only

$$\nabla f(x)^T (y-x) \ge 0$$
 for all  $y \in S$ 

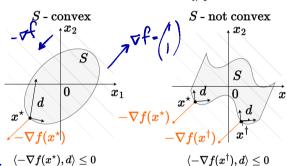
Intuitively: this says that the gradient increases as we move away from x. How to prove it? First, recast the problem as repexed of yellow How sagatum

$$\min_{x} f(x) + I_{S}(x)$$

Now apply subgradient optimality:

$$0 \in \partial(f(x) + I_S(x))$$

$$f(x)=x_1+x_2 o \min_{x_1,x_2\in \mathbb{R}^2}$$



 $x^{\star}$ - optimal

 $x^{\dagger}$ - not optimal

# **Derivation of first-order optimality**

Observe

ny cas f-buyuna

$$f(x)=x_1+x_2 o \min_{x_1,x_2\in \mathbb{R}^2}$$

$$0 \in \partial(f(x) + I_S(x))$$

$$\Leftrightarrow 0 \in \{\nabla f(x)\} + \mathcal{N}_S(x)$$

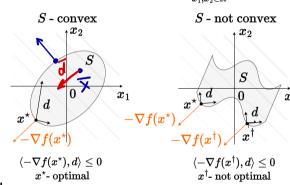
$$\Leftrightarrow -\nabla f(x) \in \mathcal{N}_S(x)$$

$$\Leftrightarrow -\nabla f(x)^T x \ge -\nabla f(x)^T y \text{ for all } y \in S$$

$$\Leftrightarrow \nabla f(x)^T (y - x) \ge 0 \text{ for all } y \in S$$
red.

as desired. Note: the condition  $0 \in \partial f(x) + \mathcal{N}_S(x)$  is a **fully general** condition for optimality in convex problems. But it's not

**condition** for optimality in convex problems. But it's not always easy to work with (KKT conditions, later, are easier).



Example 1

i Example

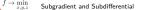
Find 
$$\partial f(x)$$
, if  $f(x) = |x-1| + |x+1| = f_1(x) + f_2(x)$ 

$$\partial f(x) = \partial f_2(x) + \partial f_2(x)$$

$$\partial f_3(x) = \int_{-1}^{-1} x < 1$$

$$\partial f_3(x) =$$

$$f \to \max_{x,y}$$



### Example 1

### i Example

Find  $\partial f(x)$ , if f(x) = |x - 1| + |x + 1|

$$\partial f_1(x) = \begin{cases} -1, & x < 1 \\ [-1;1], & x = 1 \\ 1, & x > 1 \end{cases} \qquad \partial f_2(x) = \begin{cases} -1, & x < -1 \\ [-1;1], & x = -1 \\ 1, & x > -1 \end{cases}$$

So

$$\partial f(x) = \begin{cases} -2, & x < -1 \\ [-2; 0], & x = -1 \\ 0, & -1 < x < 1 \\ [0; 2], & x = 1 \\ 2, & x > 1 \end{cases}$$

# Example 2

Find  $\partial f(x)$  if  $f(x) = [\max(0, f_0(x))]^q$ . Here,  $f_0(x)$  is a convex function on an open convex set S, and  $q \ge 1$ .

$$f(x) = \mathcal{L}(f_0(x)) = \text{right } \mathcal{L}(x) = \mathbf{x}, x \ge 0$$

$$= \mathcal{L}(\max(0, f_0(x))) \qquad f_0(x) = \max(0, f_0(x)) \qquad q \ge 1$$

$$= q \cdot [\max(0, f_0(x))] \cdot (\partial f_0(x)) = \text{conv} \mathcal{L}(0, \partial f_0(x))$$

$$= q \cdot [\max(0, f_0(x))] \cdot (\partial f_0(x)) = \text{conv} \mathcal{L}(0, \partial f_0(x))$$

 $f \to \min_{x,y,z}$  Subgradient and Subdifferential

### Example 2

Find  $\partial f(x)$  if  $f(x) = [\max(0, f_0(x))]^q$ . Here,  $f_0(x)$  is a convex function on an open convex set S, and  $q \ge 1$ .

According to the composition theorem (the function  $\varphi(x)=x^q$  is differentiable) and  $g(x)=\max(0,f_0(x))$ , we have:

$$\partial f(x) = q(g(x))^{q-1} \partial g(x)$$

By the theorem on the pointwise maximum:

$$\frac{\partial g(x)}{\partial x} = \begin{cases} \partial f_0(x), & f_0(x) > 0, \\ \{0\}, & f_0(x) < 0, \\ \{a \mid a = \lambda a', \ 0 \leq \lambda \leq 1, \ a' \in \partial f_0(x)\}, & f_0(x) = 0 \end{cases}$$

$$\text{max} \left( \text{o, } f_0(x) \right) = \text{conv} \quad \text{Offoliable}$$

 $f \to \min_{x,y,z}$  Subgradient and Subdifferential

Let V be a finite-dimensional Euclidean space, and  $x_0 \in V$ . Let  $\|\cdot\|$  be an arbitrary norm in V (not necessarily induced by the scalar product), and let  $\|\cdot\|_*$  be the corresponding conjugate norm. Then,

$$\partial \|\cdot\|(x_0) = \begin{cases} B_{\|\cdot\|_*}(0,1), & \text{if } x_0 = 0, \\ \{s \in V: \|s\|_* \leq 1; \langle s, x_0 \rangle = \|x_0\|\} = \{s \in V: \|s\|_* = 1; \langle s, x_0 \rangle = \|x_0\|\}, & \text{otherwise}. \end{cases}$$

Where  $B_{\|\cdot\|_*}(0,1)$  is the closed unit ball centered at zero with respect to the conjugate norm. In other words, a vector  $s \in V$  with  $||s||_* = 1$  is a subgradient of the norm  $||\cdot||$  at point  $x_0 \neq 0$  if and only if the Hölder's inequality  $\langle s, x_0 \rangle < ||x_0||$  becomes an equality.

Let V be a finite-dimensional Euclidean space, and  $x_0 \in V$ . Let  $\|\cdot\|$  be an arbitrary norm in V (not necessarily induced by the scalar product), and let  $\|\cdot\|_*$  be the corresponding conjugate norm. Then,

$$\partial \|\cdot\|(x_0) = \begin{cases} B_{\|\cdot\|_*}(0,1), & \text{if } x_0 = 0, \\ \{s \in V : \|s\|_* \le 1; \langle s, x_0 \rangle = \|x_0\|\} = \{s \in V : \|s\|_* = 1; \langle s, x_0 \rangle = \|x_0\|\}, & \text{otherwise.} \end{cases}$$

Where  $B_{\|\cdot\|_*}(0,1)$  is the closed unit ball centered at zero with respect to the conjugate norm. In other words, a vector  $s \in V$  with  $\|s\|_* = 1$  is a subgradient of the norm  $\|\cdot\|$  at point  $x_0 \neq 0$  if and only if the Hölder's inequality  $\langle s, x_0 \rangle \leq \|x_0\|$  becomes an equality.

$$\langle s, x \rangle - \|x\| \le \langle s, x_0 \rangle - \|x_0\|, \text{ for all } x \in V,$$

Let  $s \in V$ . By definition,  $s \in \partial \|\cdot\|(x_0)$  if and only if

or equivalently,

$$\sup_{s \in \mathbb{R}} \{ \langle s, x \rangle - ||x|| \} \le \langle s, x_0 \rangle - ||x_0||.$$

By the definition of the supremum, the latter is equivalent to

Let V be a finite-dimensional Euclidean space, and  $x_0 \in V$ . Let  $\|\cdot\|$  be an arbitrary norm in V (not necessarily induced by the scalar product), and let  $\|\cdot\|_*$  be the corresponding conjugate norm. Then,

$$\partial \|\cdot\|(x_0) = \begin{cases} B_{\|\cdot\|_*}(0,1), & \text{if } x_0 = 0, \\ \{s \in V : \|s\|_* \le 1; \langle s, x_0 \rangle = \|x_0\|\} = \{s \in V : \|s\|_* = 1; \langle s, x_0 \rangle = \|x_0\|\}, & \text{otherwise}. \end{cases}$$

vector  $s \in V$  with  $||s||_* = 1$  is a subgradient of the norm  $||\cdot||$  at point  $x_0 \neq 0$  if and only if the Hölder's inequality

 $\{s \in V : \|s\|_* \le 1; \langle s, x_0 \rangle = \|x_0\|\} = \{s \in V : \|s\|_* = 1; \langle s, x_0 \rangle = \|x_0\|\}, \text{ otherwise.}$ Where  $B_{\|\cdot\|_*}(0, 1)$  is the closed unit ball centered at zero with respect to the conjugate norm. In other words, a

$$\langle s,x\rangle-\|x\|\leq \langle s,x_0\rangle-\|x_0\|, \text{ for all } x\in V,$$
 conjugate fur or equivalently,

By the definition of the supremum, the latter is equivalent to

 $\sup_{f \to \min_{x,y,z}} \sup_{\text{Subgradient and Subdifferential}} \{\langle s, x \rangle - ||x||\} = \langle s, x_0 \rangle - ||x_0||.$ 

 $\sup \{\langle s, x \rangle - ||x||\} \le \langle s, x_0 \rangle - ||x_0||.$ 

Let  $s \in V$ . By definition,  $s \in \partial \|\cdot\|(x_0)$  if and only if

 $\langle s, x_0 \rangle \leq ||x_0||$  becomes an equality.

It is important to note that the expression on the left side is the supremum from the definition of the Fenchel conjugate function for the norm, which is known to be

 $\sup_{x\in V}\{\langle s,x\rangle-\|x\|\}=\begin{cases} 0, & \text{if }\|s\|_*\leq 1,\\ +\infty, & \text{otherwise}. \end{cases}$  Thus, equation is equivalent to  $\|s\|_*\leq 1$  and

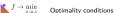
Thus, equation is equivalent to  $||s||_* \le 1$  a  $\langle s, x_0 \rangle = ||x_0||$ .

Consequently, it remains to note that for  $x_0 \neq 0$ , the inequality  $\|s\|_* \leq 1$  must become an equality since, when  $\|s\|_* < 1$ , Hölder's inequality implies  $\langle s, x_0 \rangle \leq \|s\|_* \|x_0\| < \|x_0\|$ .

The conjugate norm in Example above does not appear by chance. It turns out that, in a completely similar manner for an arbitrary function f (not just for the norm), its subdifferential can be described in terms of the dual object — the Fenchel conjugate function.



େ ଚ ପ





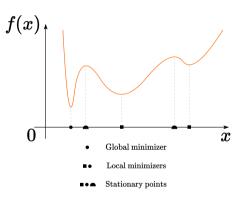


Figure 5: Illustration of different stationary (critical) points







A set S is usually called a **budget set**.

Figure 5: Illustration of different stationary (critical) points

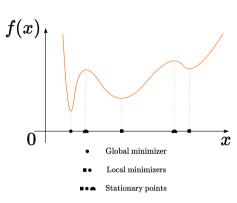


Figure 5: Illustration of different stationary (critical) points

$$f(x)\to \min_{x\in S}$$

A set S is usually called a **budget set**. We say that the problem has a solution if the budget set **is not empty**:  $x^* \in S$ , in which the minimum or the infimum of the given function is achieved.

⊕ ∩ ∅

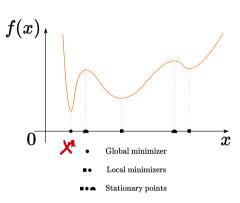


Figure 5: Illustration of different stationary (critical) points

$$f(x) \to \min_{x \in S}$$

A set S is usually called a **budget set**.

We say that the problem has a solution if the budget set is **not empty**:  $x^* \in S$ , in which the minimum or the infimum of the given function is achieved.

• A point  $x^*$  is a global minimizer if  $f(x^*) \leq f(x)$  for all x.

⊕ 0 0

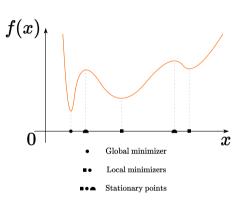


Figure 5: Illustration of different stationary (critical) points

$$f(x) \to \min_{x \in S}$$

A set S is usually called a **budget set**.

We say that the problem has a solution if the budget set **is not empty**:  $x^* \in S$ , in which the minimum or the infimum of the given function is achieved.

- A point  $x^*$  is a **global minimizer** if  $f(x^*) \leq f(x)$  for all x.
- A point  $x^*$  is a **local minimizer** if there exists a neighborhood N of  $x^*$  such that  $f(x^*) \le f(x)$  for all  $x \in N$ .

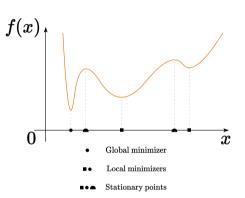


Figure 5: Illustration of different stationary (critical) points

$$f(x) \to \min_{x \in S}$$

A set S is usually called a **budget set**.

We say that the problem has a solution if the budget set is not empty:  $x^* \in S$ , in which the minimum or the infimum of the given function is achieved.

- A point  $x^*$  is a **global minimizer** if  $f(x^*) \leq f(x)$  for all x.
- A point  $x^*$  is a **local minimizer** if there exists a neighborhood N of  $x^*$  such that  $f(x^*) \le f(x)$  for all  $x \in N$ .
- A point  $x^*$  is a strict local minimizer (also called a strong local minimizer) if there exists a neighborhood N of  $x^*$  such that  $f(x^*) < f(x)$  for all  $x \in N$  with  $x \neq x^*$ .

⊕ ∩ ∅

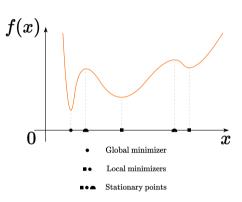


Figure 5: Illustration of different stationary (critical) points

$$f(x) \to \min_{x \in S}$$

A set S is usually called a **budget set**.

We say that the problem has a solution if the budget set is **not empty**:  $x^* \in S$ , in which the minimum or the infimum of the given function is achieved.

- A point  $x^*$  is a **global minimizer** if  $f(x^*) \leq f(x)$  for all x.
- A point  $x^*$  is a **local minimizer** if there exists a neighborhood N of  $x^*$  such that  $f(x^*) \leq f(x)$  for all  $x \in N$ .
- A point  $x^*$  is a strict local minimizer (also called a strong local minimizer) if there exists a neighborhood N of  $x^*$  such that  $f(x^*) < f(x)$  for all  $x \in N$  with  $x \neq x^*$ .
- We call  $x^*$  a stationary point (or critical) if  $\nabla f(x^*) = 0$ . Any local minimizer of a differentiable function must be a stationary point.

⊕ n ø

### i Theorem

Let  $S \subset \mathbb{R}^n$  be a compact set and f(x) a continuous function on S. So, the point of the global minimum of the function f(x) on S exists.



### **i** Theorem

Let  $S\subset\mathbb{R}^n$  be a compact set and f(x) a continuous function on S. So, the point of the global minimum of the function f(x) on S exists.



Figure 6: A lot of practical problems are theoretically solvable

େ ଚ

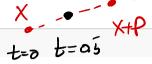
### i Theorem

Let  $S\subset\mathbb{R}^n$  be a compact set and f(x) a continuous function on S. So, the point of the global minimum of the function f(x) on S exists.



Figure 6: A lot of practical problems are theoretically solvable

# i Taylor's Theorem



Suppose that  $f:\mathbb{R}^n\to\mathbb{R}$  is continuously differentiable and that  $p\in\mathbb{R}^n$ . Then we have:

$$f(x+p) = f(x) + \nabla f(x+tp)^T p \quad \text{ for some } t \in (0,1)$$

### **i** Theorem

Let  $S\subset\mathbb{R}^n$  be a compact set and f(x) a continuous function on S. So, the point of the global minimum of the function f(x) on S exists.



Figure 6: A lot of practical problems are theoretically solvable

### Taylor's Theorem

Suppose that  $f:\mathbb{R}^n\to\mathbb{R}$  is continuously differentiable and that  $p\in\mathbb{R}^n.$  Then we have:

$$f(x+p) = f(x) + \nabla f(x+tp)^T p \quad \text{ for some } t \in (0,1)$$

Moreover, if f is twice continuously differentiable, we have:

$$\nabla f(x+p) = \nabla f(x) + \int_0^1 \nabla^2 f(x+tp) p \, dt$$

$$f(x+p) = f(x) + \nabla f(x)^{T} p + \frac{1}{2} p^{T} \nabla^{2} f(x+tp) p$$

for some  $t \in (0,1)$ .

# BE3/CNOBHAS OE of (x\*)

Unconstrained optimization

Unconstrained optimization

Unconstrained optimization

Unconstrained optimization 

The state of th

Heodx yer. nok. Exceptingua

i First-Order Necessary Conditions

If  $x^{st}$  is a local minimizer and f is continuously differentiable in an open neighborhood, then

$$\nabla f(x^*) = 0$$



### i First-Order Necessary Conditions

If  $x^*$  is a local minimizer and f is continuously differentiable in an open neighborhood, then

$$\nabla f(x^*) = 0$$

**Proof** Suppose for contradiction that  $\nabla f(x^*) \neq 0$ . Define

the vector 
$$p = -\nabla f(x^*)$$
 and note that 
$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

Nycmo x\*- mutumya, to of (x\*) =0

Unconstrained optimization

### i First-Order Necessary Conditions

If  $x^{*}$  is a local minimizer and f is continuously differentiable in an open neighborhood, then

$$\nabla f(x^*) = 0$$

**Proof** Suppose for contradiction that  $\nabla f(x^*) \neq 0$ . Define the vector  $p = -\nabla f(x^*)$  and note that

$$p^{T} \nabla f(x^{*}) = -\|\nabla f(x^{*})\|^{2} < 0$$

Because  $\nabla f$  is continuous near  $x^*$ , there is a scalar T>0 such that

$$p^T \nabla f(x^* + tp) < 0$$
, for all  $t \in [0, T]$ 

⊕ ೧

### i First-Order Necessary Conditions

If  $x^*$  is a local minimizer and f is continuously differentiable in an open neighborhood, then

$$\nabla f(x^*) = 0$$

**Proof** Suppose for contradiction that  $\nabla f(x^*) \neq 0$ . Define For any  $\bar{t} \in (0,T]$ , we have by Taylor's theorem that the vector  $p = -\nabla f(x^*)$  and note that

$$=-
abla f(x^*)$$
 and note that  $\mathbf{\Phi}$  opuly  $\mathbf{\Phi}$  Teuro  $\mathbf{P}$ :

$$p^{T}\nabla f(x^{*}) = -\|\nabla f(x^{*})\|^{2} < 0 \qquad \qquad f(x^{*} + \bar{t}p) = f(x^{*}) + \bar{t}p^{T}\nabla f(x^{*} + tp), \text{ for some } t \in (0, \bar{t})$$

Because  $\nabla f$  is continuous near  $x^*$ , there is a scalar T>0

$$p^T \nabla f(x^* + tp) < 0, \text{ for all } t \in [0, T]$$

such that

### i First-Order Necessary Conditions

If  $x^*$  is a local minimizer and f is continuously differentiable in an open neighborhood, then

$$\nabla f(x^*) = 0$$

**Proof** Suppose for contradiction that  $\nabla f(x^*) \neq 0$ . Define For any  $\bar{t} \in (0,T]$ , we have by Taylor's theorem that the vector  $p = -\nabla f(x^*)$  and note that

$$p^{T} \nabla f(x^{*}) = -\|\nabla f(x^{*})\|^{2} < 0$$

 $f(x^* + \bar{t}p) = f(x^*) + \bar{t}p^T \nabla f(x^* + tp)$ , for some  $t \in (0, \bar{t})$ Because  $\nabla f$  is continuous near  $x^*$ , there is a scalar T>0 Therefore,  $f(x^*+\bar tp)< f(x^*)$  for all  $\bar t\in(0,T]$ . We have such that

is not a local minimizer, leading to a contradiction.

$$p^T \nabla f(x^* + tp) < 0$$
, for all  $t \in [0, T]$ 



i Second-Order Sufficient Conditions

Suppose that  $\nabla^2 f$  is continuous in an open neighborhood of  $x^*$  and that

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Then  $x^*$  is a strict local minimizer of f.



### i Second-Order Sufficient Conditions

Suppose that  $\nabla^2 f$  is continuous in an open neighborhood of  $x^*$  and that

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Then  $x^*$  is a strict local minimizer of f.

**Proof** Because the Hessian is continuous and positive definite at  $x^*$ , we can choose a radius r>0 such that  $\nabla^2 f(x)$  remains positive definite for all x in the open ball  $B=\{z\mid \|z-x^*\|< r\}$ . Taking any nonzero vector p with  $\|p\|< r$ , we have  $x^*+p\in B$  and so

### i Second-Order Sufficient Conditions

Suppose that  $\nabla^2 f$  is continuous in an open neighborhood of  $x^*$  and that

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Then  $x^*$  is a strict local minimizer of f.

**Proof** Because the Hessian is continuous and positive definite at  $x^*$ , we can choose a radius r>0 such that  $\nabla^2 f(x)$  remains positive definite for all x in the open ball  $B=\{z\mid \|z-x^*\|< r\}$ . Taking any nonzero vector p with  $\|p\|< r$ , we have  $x^*+p\in B$  and so

$$f(x^* + p) = f(x^*) + p^T \nabla f(x^*) + \frac{1}{2} p^T \nabla^2 f(z) p$$

₩

## i Second-Order Sufficient Conditions

Suppose that  $\nabla^2 f$  is continuous in an open neighborhood of  $x^*$  and that

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Then  $x^*$  is a strict local minimizer of f.

**Proof** Because the Hessian is continuous and positive definite at  $x^*$ , we can choose a radius r>0 such that  $\nabla^2 f(x)$  remains positive definite for all x in the open ball  $B=\{z\mid \|z-x^*\|< r\}$ . Taking any nonzero vector p

with  $\|p\| < r$ , we have  $x^* + p \in B$  and so

$$f(x^* + p) = f(x^*) + p^T \nabla f(x^*) + \frac{1}{2} p^T \nabla^2 f(z) p$$

$$= f(x^*) + \frac{1}{2}p^T \nabla^2 f(z)p$$

Unconstrained optimization

### i Second-Order Sufficient Conditions

Suppose that  $\nabla^2 f$  is continuous in an open neighborhood of  $x^*$  and that

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Then  $x^*$  is a strict local minimizer of f.

**Proof** Because the Hessian is continuous and positive definite at  $x^*$ , we can choose a radius r>0 such that  $\nabla^2 f(x)$  remains positive definite for all x in the open ball  $B=\{z\mid \|z-x^*\|< r\}$ . Taking any nonzero vector p with  $\|p\|< r$ , we have  $x^*+p\in B$  and so

$$f(x^* + p) = f(x^*) + p^T \nabla f(x^*) + \frac{1}{2} p^T \nabla^2 f(z) p$$

$$= f(x^*) + \frac{1}{2} p^T \nabla^2 f(z) p$$

$$f(x^* + p) = f(x^*) + p^T \nabla f(x^*) + \frac{1}{2} p^T \nabla^2 f(z) p$$

where  $z=x^*+tp$  for some  $t\in(0,1)$ . Since  $z\in B$ , we have  $p^T\nabla^2 f(z)p>0$  and therefore  $f(x^*+p)>f(x^*)$ , giving the result.

T'Y X

# Peano counterexample

Note, that if  $\nabla f(x^*) = 0, \nabla^2 f(x^*) \succeq 0$ , i.e. the hessian is positive semidefinite, we cannot be sure if  $x^*$  is a local minimum.



# Peano counterexample

Note, that if  $\nabla f(x^*) = 0, \nabla^2 f(x^*) \succeq 0$ , i.e. the hessian is positive semidefinite, we cannot be sure if  $x^*$  is a local minimum.

$$f(x,y) = (2x^2 - y)(x^2 - y)$$

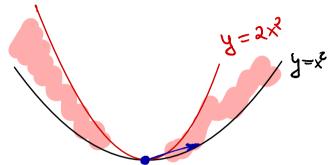


#### Peano counterexample

Note, that if  $\nabla f(x^*)=0, \nabla^2 f(x^*)\succeq 0$ , i.e. the hessian is positive *semidefinite*, we cannot be sure if  $x^*$  is a local minimum.

$$f(x,y) = (2x^2 - y)(x^2 - y)$$

Although the surface does not have a local minimizer at the origin, its intersection with any vertical plane through the origin (a plane with equation y=mx or x=0) is a curve that has a local minimum at the origin. In other words, if a point starts at the origin (0,0) of the plane, and moves away from the origin along any straight line, the value of  $(2x^2-y)(x^2-y)$  will increase at the start of the motion. Nevertheless, (0,0) is not a local minimizer of the function, because moving along a parabola such as  $y=\sqrt{2}x^2$  will cause the function value to decrease.





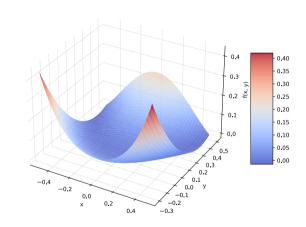
#### Peano counterexample

Note, that if  $\nabla f(x^*)=0, \nabla^2 f(x^*)\succeq 0$ , i.e. the hessian is positive *semidefinite*, we cannot be sure if  $x^*$  is a local minimum.

$$f(x,y) = (2x^2 - y)(x^2 - y)$$

Although the surface does not have a local minimizer at the origin, its intersection with any vertical plane through the origin (a plane with equation y = mx or x = 0) is a curve that has a local minimum at the origin. In other words, if a point starts at the origin (0,0) of the plane, and moves away from the origin along any straight line, the value of  $(2x^2 - y)(x^2 - y)$  will increase at the start of the motion. Nevertheless, (0,0) is not a local minimizer of the function, because moving along a parabola such as  $y = \sqrt{2}x^2$  will cause the function value to decrease.

#### Non-convex PL function





# YON BHA & ONTUMUSAY

#### **Constrained optimization**





Constrained optimization

# General first-order local optimality condition Direction $d \in \mathbb{R}^n$ is a feasible direction

at  $x^* \in S \subseteq \mathbb{R}^n$  if small steps along d do not take us outside of S.



Direction  $d\in\mathbb{R}^n$  is a feasible direction at  $x^*\in S\subseteq\mathbb{R}^n$  if small steps along d

do not take us outside of  ${\cal S}.$ 

Consider a set  $S \subseteq \mathbb{R}^n$  and a function  $f: \mathbb{R}^n \to \mathbb{R}$ . Suppose that  $x^* \in S$  is a

point of local minimum for f over S,

and further assume that f is continuously differentiable around  $\boldsymbol{x}^{\ast}.$ 



Direction  $d \in \mathbb{R}^n$  is a feasible direction at  $x^* \in S \subseteq \mathbb{R}^n$  if small steps along d do not take us outside of S.

Consider a set  $S \subseteq \mathbb{R}^n$  and a function

 $f: \mathbb{R}^n \to \mathbb{R}$ . Suppose that  $x^* \in S$  is a point of local minimum for f over S, and further assume that f is

and further assume that f is continuously differentiable around  $x^*$ .

1. Then for every feasible direction  $d \in \mathbb{R}^n$  at  $x^*$  it holds that  $\nabla f(x^*)^{\top} d > 0$ .



Direction  $d \in \mathbb{R}^n$  is a feasible direction at  $x^* \in S \subseteq \mathbb{R}^n$  if small steps along d do not take us outside of S.

Consider a set  $S\subseteq\mathbb{R}^n$  and a function

 $f: \mathbb{R}^n \to \mathbb{R}$ . Suppose that  $x^* \in S$  is a point of local minimum for f over S, and further assume that f is continuously differentiable around  $x^*$ .

- 1. Then for every feasible direction  $d \in \mathbb{R}^n$  at  $x^*$  it holds that  $\nabla f(x^*)^\top d > 0$ .
- 2. If, additionally, S is convex then

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$



Direction  $d \in \mathbb{R}^n$  is a feasible direction at  $x^* \in S \subseteq \mathbb{R}^n$  if small steps along d do not take us outside of S.

Consider a set  $S\subseteq\mathbb{R}^n$  and a function

 $f: \mathbb{R}^n \to \mathbb{R}$ . Suppose that  $x^* \in S$  is a point of local minimum for f over S, and further assume that f is continuously differentiable around  $x^*$ .

- 1. Then for every feasible direction  $d \in \mathbb{R}^n$  at  $x^*$  it holds that  $\nabla f(x^*)^\top d > 0$ .
- 2. If, additionally, S is convex then

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$



Direction  $d \in \mathbb{R}^n$  is a feasible direction at  $x^* \in S \subseteq \mathbb{R}^n$  if small steps along d do not take us outside of S.

Consider a set 
$$S \subseteq \mathbb{R}^n$$
 and a function  $f: \mathbb{R}^n \to \mathbb{R}$ . Suppose that  $x^* \in S$  is a point of local minimum for  $f$  over  $S$ , and further assume that  $f$  is continuously differentiable around  $x^*$ .

- 1. Then for every feasible direction  $d \in \mathbb{R}^n$  at  $x^*$  it holds that  $\nabla f(x^*)^{\top} d > 0.$ 2. If, additionally, S is convex then

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$-\nabla f(\vec{x}) \in \mathcal{N}_{S}(\vec{x})$$

$$f(x)=x_1+x_2 o \min_{x_1,x_2\in \mathbb{R}^2}$$

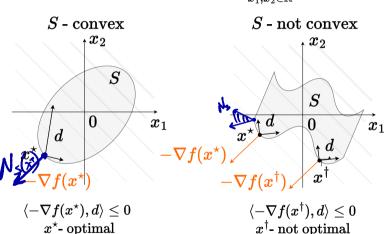


Figure 7: General first order local optimality condition

It should be mentioned, that in the **convex** case (i.e., f(x) is convex) necessary condition becomes sufficient.





It should be mentioned, that in the  ${\bf convex}$  case (i.e., f(x) is convex) necessary condition becomes sufficient.

One more important result for the convex unconstrained case sounds as follows. If  $f(x): S \to \mathbb{R}$  - convex function defined on the convex set S, then:



It should be mentioned, that in the **convex** case (i.e., f(x) is convex) necessary condition becomes sufficient.

One more important result for the convex unconstrained case sounds as follows. If  $f(x):S\to\mathbb{R}$  - convex function defined on the convex set S, then:

• Any local minima is the global one.





It should be mentioned, that in the **convex** case (i.e., f(x) is convex) necessary condition becomes sufficient.

One more important result for the convex unconstrained case sounds as follows. If  $f(x): S \to \mathbb{R}$  - convex function defined on the convex set S, then:

- Any local minima is the global one.
- The set of the local minimizers S\* is convex.



It should be mentioned, that in the **convex** case (i.e., f(x) is convex) necessary condition becomes sufficient.

One more important result for the convex unconstrained case sounds as follows. If  $f(x): S \to \mathbb{R}$  - convex function defined on the convex set S, then:

- Any local minima is the global one.
- The set of the local minimizers S\* is convex.
- If f(x) strictly or strongly convex function, then  $S^*$  contains only one single point  $S^* = \{x^*\}$ .





Things are pretty simple and intuitive in unconstrained problems. In this section, we will add one equality constraint, i.e.





Things are pretty simple and intuitive in unconstrained problems. In this section, we will add one equality constraint, i.e.

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\mathrm{s.t.}\ h(x)=0$$

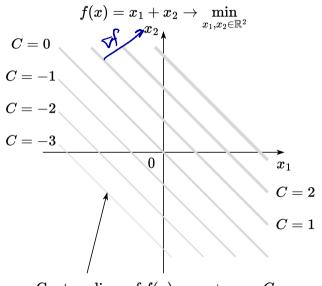


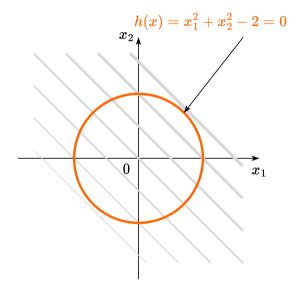
Things are pretty simple and intuitive in unconstrained problems. In this section, we will add one equality constraint, i.e.

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 s.t.  $h(x) = 0$ 

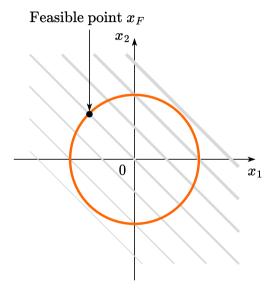
We will try to illustrate an approach to solve this problem through the simple example with  $f(x) = x_1 + x_2$  and  $h(x) = x_1^2 + x_2^2 - 2$ .

⊕ ი

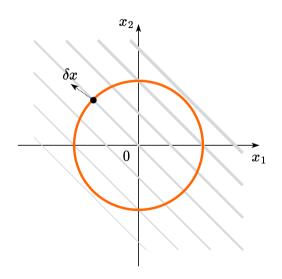




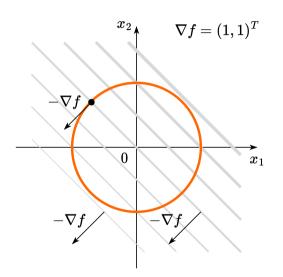




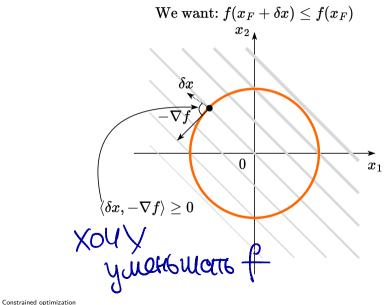




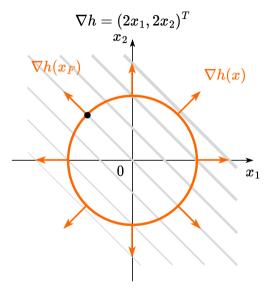




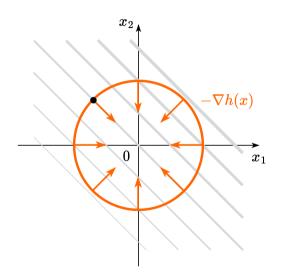




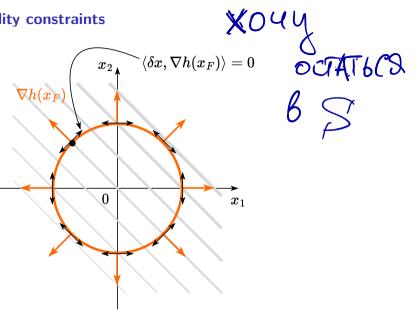


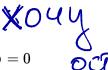


















Generally: to move from  $x_F$  along the budget set toward decreasing the function, we need to guarantee two conditions:

େ ଚ

Generally: to move from  $x_F$  along the budget set toward decreasing the function, we need to guarantee two conditions:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$



TPLOD BOLLULA  $\begin{cases} \langle \delta x, \nabla h(x_F) \rangle = 0 & \text{k} & \text{f} \\ \langle \delta x, -\nabla f(x_F) \rangle > 0 & \text{k} \end{cases}$ Generally: to move from  $x_F$  along the budget set toward decreasing the function, we need to guarantee two conditions:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$

$$\langle \delta x, -\nabla f(x_F) \rangle > 0$$





Generally: to move from  $x_F$  along the budget set toward decreasing the function, we need to guarantee two conditions:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$

$$\langle \delta x, -\nabla f(x_F) \rangle > 0$$

Let's assume, that in the process of such a movement, we have come to the point where



Generally: to move from  $x_F$  along the budget set toward decreasing the function, we need to guarantee two conditions:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$

$$\langle \delta x, -\nabla f(x_F) \rangle > 0$$

Let's assume, that in the process of such a movement, we have come to the point where

$$-\nabla f(x) = \nu \nabla h(x)$$



Generally: to move from  $x_F$  along the budget set toward decreasing the function, we need to guarantee two conditions:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$

$$\langle \delta x, -\nabla f(x_F) \rangle > 0$$

Let's assume, that in the process of such a movement, we have come to the point where

$$-\nabla f(x) = \nu \nabla h(x)$$

$$\langle \delta x, -\nabla f(x) \rangle = \langle \delta x, \nu \nabla h(x) \rangle = 0$$



Generally: to move from  $x_F$  along the budget set toward decreasing the function, we need to guarantee two conditions:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$

$$\langle \delta x, -\nabla f(x_F) \rangle > 0$$

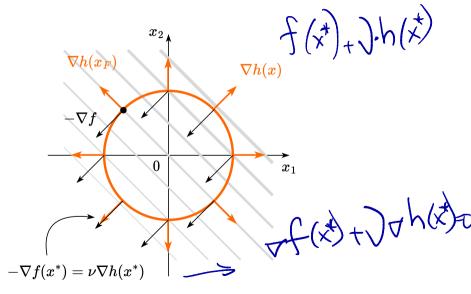
Let's assume, that in the process of such a movement, we have come to the point where

$$-\nabla f(x) = \nu \nabla h(x)$$

$$\langle \delta x, -\nabla f(x) \rangle = \langle \delta x, \nu \nabla h(x) \rangle = 0$$

Then we came to the point of the budget set, moving from which it will not be possible to reduce our function. This is the local minimum in the constrained problem:)





Constrained optimization

⊕ n ø

#### Lagrangian

So let's define a Lagrange function (just for our convenience):

$$L(x,\nu) = f(x) + \nu h(x)$$



#### Lagrangian

So let's define a Lagrange function (just for our convenience):

$$L(x,\nu) = f(x) + \nu h(x)$$

Then if the problem is regular (we will define it later) and the point  $x^*$  is the local minimum of the problem described above, then there exists  $v^*$ :



So let's define a Lagrange function (just for our convenience):

$$L(x,\nu) = f(x) + \nu h(x)$$

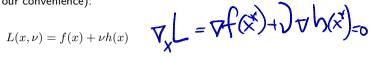
Then if the problem is regular (we will define it later) and the point  $x^*$  is the local minimum of the problem described above, then there exists  $v^*$ :

Necessary conditions

We should notice that  $L(x^*, \nu^*) = f(x^*)$ .

So let's define a Lagrange function (just for our convenience):

$$L(x,\nu) = f(x) + \nu h(x)$$



Then if the problem is regular (we will define it later) and the point  $x^*$  is the local minimum of the problem described above, then there exists  $\nu^*$ :

Necessary conditions

$$abla_x L(x^*, 
u^*) = 0$$
 that's written above

We should notice that  $L(x^*, \nu^*) = f(x^*)$ .



So let's define a Lagrange function (just for our convenience):

$$L(x,\nu) = f(x) + \nu h(x)$$

Then if the problem is regular (we will define it later) and the point  $x^*$  is the local minimum of the problem described above, then there exists  $\nu^*$ :

Necessary conditions

$$abla_x L(x^*, \nu^*) = 0$$
 that's written above

$$\nabla_{\nu}L(x^{*},\nu^{*})=0$$
 budget constraint

We should notice that  $L(x^*, \nu^*) = f(x^*)$ .

Constrained optimization

So let's define a Lagrange function (just for our convenience):

$$L(x,\nu) = f(x) + \nu h(x)$$

Then if the problem is regular (we will define it later) and the point  $x^*$  is the local minimum of the problem described above, then there exists  $\nu^*$ :

We should notice that  $L(x^*, \nu^*) = f(x^*)$ .

Constrained optimization

So let's define a Lagrange function (just for our convenience):

$$L(x,\nu) = f(x) + \nu h(x)$$

Then if the problem is regular (we will define it later) and the point  $x^*$  is the local minimum of the problem described above, then there exists  $\nu^*$ :

Necessary conditions

Sufficient conditions

 $\nabla_x L(x^*, \nu^*) = 0$  that's written above

 $\nabla_{\nu}L(\boldsymbol{x}^*,\boldsymbol{\nu}^*) = 0 \text{ budget constraint}$ 

$$\langle y, \nabla_{xx}^2 L(x^*, \nu^*) y \rangle > 0,$$

We should notice that  $L(x^*, \nu^*) = f(x^*)$ .



So let's define a Lagrange function (just for our convenience):

$$L(x,\nu) = f(x) + \nu h(x)$$

Then if the problem is regular (we will define it later) and the point  $x^*$  is the local minimum of the problem described above, then there exists  $\nu^*$ :

Necessary conditions

 $\nabla_x L(x^*, \nu^*) = 0$  that's written above

 $\nabla_{\nu}L(x^*, \nu^*) = 0$  budget constraint

Sufficient conditions

$$\langle y, \nabla^2_{xx} L(x^*, \nu^*) y \rangle > 0,$$

$$\forall y \neq 0 \in \mathbb{R}^n : \nabla h(x^*)^\top y = 0$$

We should notice that  $L(x^*, \nu^*) = f(x^*)$ .

### **Equality constrained problem**

Through 
$$L(x,\nu) = f(x) + \sum_{i=1}^{p} \nu_i h_i(x) = f(x) + \nu^\top h(x)$$

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

Let f(x) and  $h_i(x)$  be twice differentiable at the point  $x^*$  and continuously differentiable in some neighborhood  $x^*$ . The local minimum conditions for  $x \in \mathbb{R}^n, \nu \in \mathbb{R}^p$  are written as

ECP: Necessary conditions 
$$\nabla_x L(x^*,\nu^*) = 0$$
 
$$\nabla_\nu L(x^*,\nu^*) = 0$$

ECP: Sufficient conditions

$$\langle y, \nabla_{xx}^2 L(x^*, \nu^*) y \rangle > 0,$$
  
$$\forall y \neq 0 \in \mathbb{R}^n : \nabla h_i(x^*)^\top y = 0$$

Linear Least Squares

$$\frac{1}{2} \|X\|_{2}^{2} \rightarrow \min_{X \in \mathcal{R}} A$$

$$\frac{1}{4} \|X\|_{2}^{2} \rightarrow \min_{X \in \mathcal{R}} A$$
Pose the optimization problem and solve than for thear system  $Ax = b, A \in \mathbb{R}^{m \times n}$  for three cases (assuming the matrix is full rapk):
$$\frac{1}{4} \|X\|_{2}^{2} \rightarrow \min_{X \in \mathcal{R}} A$$
Permutual:
$$\frac{1}{4} \|X\|_{2}^{2} \rightarrow \min_{X \in \mathcal{R}} A$$
Permutual:
$$\frac{1}{4} \|X\|_{2}^{2} \rightarrow \min_{X \in \mathcal{R}} A$$

$$\frac{1}{4} \|X\|_{2}$$

### **Linear Least Squares**

#### i Example

Pose the optimization problem and solve them for linear system  $Ax = b, A \in \mathbb{R}^{m \times n}$  for three cases (assuming the matrix is full rank):

- m < n
- m=n

- 🗢 ი

#### **Linear Least Squares**

#### i Example

Pose the optimization problem and solve them for linear system  $Ax = b, A \in \mathbb{R}^{m \times n}$  for three cases (assuming the matrix is full rank):

- m < n
- $\bullet$  m=n
- m > n





### **Example of inequality constraints**

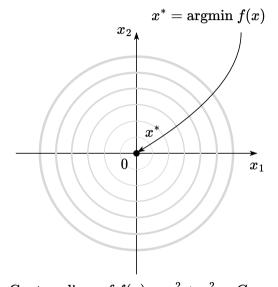
$$f(x) = x_1^2 + x_2^2$$
  $g(x) = x_1^2 + x_2^2 - 1$ 

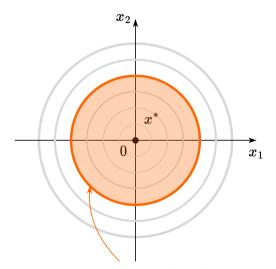
$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$







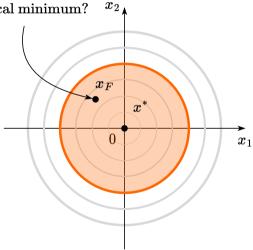


Feasible region  $g(x) = x_1^2 + x_2^2 - 1 \le 0$ 



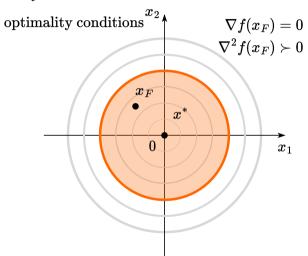


How to recognize that some feasible point is at local minimum?  $x_2$ 





Easy in this case! Just check unconstrained





Thus, if the constraints of the type of inequalities are inactive in the constrained problem, then don't worry and write out the solution to the unconstrained problem. However, this is not the whole story. Consider the second childish example

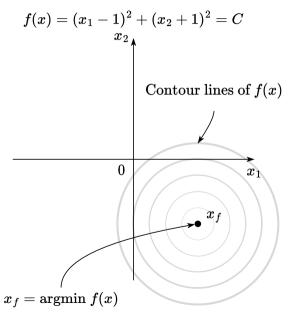
$$f(x) = (x_1 - 1)^2 + (x_2 + 1)^2$$
  $g(x) = x_1^2 + x_2^2 - 1$ 

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

s.t. 
$$g(x) \leq 0$$



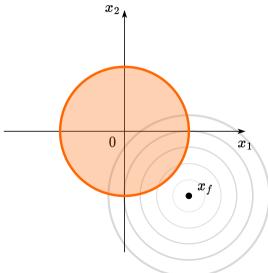
♥ ი ⊘



Optimization with inequality constraints

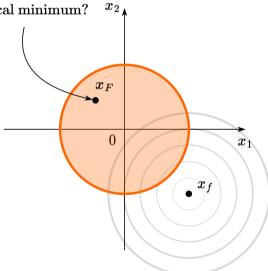


Feasible region  $g(x)=x_1^2+x_2^2-1\leq 0$ 



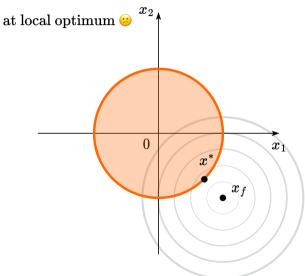


How to recognize that some feasible point is at local minimum?  $x_2$ 



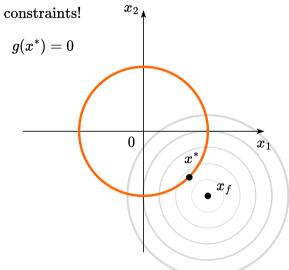


Not very easy in this case! Even gradient  $\neq 0$ 

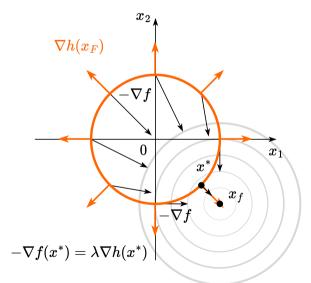




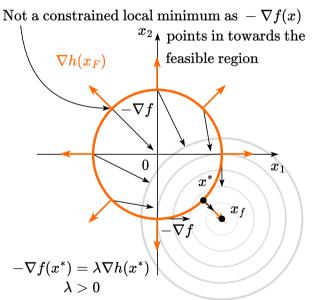
Effectively have a problem with equality











So, we have a problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

 $\text{s.t. } g(x) \leq 0$ 

Two possible cases:

$$g(x) \le 0$$
 is inactive.  $g(x^*) < 0$ 

•  $g(x^*) < 0$ 



So, we have a problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 s.t.  $g(x) \le 0$ 

Two possible cases:

$$g(x) \le 0$$
 is inactive.  $g(x^*) < 0$ 

- $g(x^*) < 0$



So, we have a problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 s.t.  $g(x) \le 0$ 

Two possible cases:

$$g(x) \le 0$$
 is inactive.  $g(x^*) < 0$ 

- $g(x^*) < 0$
- $\nabla f(x^*) = 0$
- $\nabla^2 \hat{f}(x^*) > 0$



So, we have a problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 s.t.  $g(x) \le 0$ 

Two possible cases:

$$g(x) \le 0$$
 is inactive.  $g(x^*) < 0$ 

- $g(x^*) < 0$
- $\nabla f(x^*) = 0$
- $\nabla^2 \hat{f}(x^*) > 0$



So, we have a problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

 $\text{s.t. } g(x) \leq 0$ 

Two possible cases:

$$g(x) \le 0$$
 is inactive.  $g(x^*) < 0$ 

- $g(x^*) < 0$
- $\nabla f(x^*) = 0$
- $\nabla^2 f(x^*) > 0$

$$g(x) \le 0$$
 is active.  $g(x^*) = 0$ 

 $g(x^*) = 0$ 

So, we have a problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

Two possible cases:

$$g(x) \leq 0$$
 is inactive.  $g(x^*) < 0$ 

- $g(x^*) < 0$
- $\nabla f(x^*) = 0$
- $\nabla^2 f(x^*) > 0$

$$g(x) \leq 0$$
 is active.  $g(x^*) = 0$ 

- $\overline{q}(x^*) = 0$
- Necessary conditions:  $-\nabla f(x^*) = \lambda \nabla g(x^*), \ \lambda > 0$

େ ଚେଟ

So, we have a problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

 $\text{s.t. } g(x) \leq 0$ 

Two possible cases:

$$g(x) \leq 0$$
 is inactive.  $g(x^*) < 0$ 

- $g(x^*) < 0$
- $\nabla f(x^*) = 0$
- $\nabla^2 f(x^*) > 0$

$$q(x) \le 0$$
 is active.  $q(x^*) = 0$ 

- $\vec{q}(x^*) = 0$
- Necessary conditions:  $-\nabla f(x^*) = \lambda \nabla g(x^*), \ \lambda > 0$
- Sufficient conditions:

$$\langle y, \nabla^2_{xx} L(x^*, \lambda^*) y \rangle > 0, \forall y \neq 0 \in \mathbb{R}^n : \nabla g(x^*)^\top y = 0$$

⊕ ∩ ∅

Combining two possible cases, we can write down the general conditions for the problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 s.t.  $g(x) \le 0$ 

 $s.t. g(x) \leq$ 

Let's define the Lagrange function:

$$L(x,\lambda) = f(x) + \lambda g(x)$$



Combining two possible cases, we can  $\mbox{ If } x^*$  is a local minimum of the problem described above, then there exists write down the general conditions for the a unique Lagrange multiplier  $\lambda^*$  such that: problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 s.t.  $g(x) \leq 0$ 

Let's define the Lagrange function:

$$L(x,\lambda) = f(x) + \lambda g(x)$$



Combining two possible cases, we can  $\mbox{ If } x^*$  is a local minimum of the problem described above, then there exists write down the general conditions for the a unique Lagrange multiplier  $\lambda^*$  such that: problem:

$$\min_{x \in \mathbb{R}^n} \qquad (1) \nabla_x L(x^*, \lambda^*) = 0$$

$$(2) \lambda^* > 0$$

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 (2)  $\lambda^* \ge$  s.t.  $g(x) \le 0$ 

Let's define the Lagrange function:

$$L(x,\lambda) = f(x) + \lambda g(x)$$



Combining two possible cases, we can If  $x^*$  is a local minimum of the problem described above, then there exists write down the general conditions for the a unique Lagrange multiplier  $\lambda^*$  such that: problem:

$$(1) \nabla_x L(x^*, \lambda^*) = 0$$

$$f(x) \to \min_{x \in \mathbb{R}^n} \tag{2} \lambda^* \ge 0$$

s.t. 
$$g(x) \le 0$$
 (3)  $\lambda^* g(x^*) = 0$ 

Let's define the Lagrange function:

$$L(x,\lambda) = f(x) + \lambda g(x)$$



Combining two possible cases, we can If  $x^*$  is a local minimum of the problem described above, then there exists write down the general conditions for the a unique Lagrange multiplier  $\lambda^*$  such that: problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\begin{array}{cc}
\mathbf{n} \\
\mathbf{n}
\end{array} \qquad (2) \ \lambda^* > 0$$

s.t. 
$$g(x) \leq 0$$

(3) 
$$\lambda^* g(x^*) = 0$$
  
(4)  $g(x^*) \le 0$ 

 $(1) \nabla_x L(x^*, \lambda^*) = 0$ 

Let's define the Lagrange function:

$$L(x,\lambda) = f(x) + \lambda g(x)$$



# Lagrange function for inequality constraints

Combining two possible cases, we can If  $x^*$  is a local minimum of the problem described above, then there exists write down the general conditions for the a unique Lagrange multiplier  $\lambda^*$  such that: problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

s.t. 
$$g(x) \leq 0$$

Let's define the Lagrange function:

$$L(x,\lambda) = f(x) + \lambda g(x)$$

The classical Karush-Kuhn-Tucker first and second-order optimality conditions for a local minimizer  $x^*$ , stated under some regularity conditions, can be written as follows.

$$(1) \nabla_x L(x^*, \lambda^*) = 0$$

$$(2) \lambda^* \ge 0$$

$$(3) \lambda^* g(x^*) = 0$$

$$(4) g(x^*) \le 0$$

(5) 
$$\forall y \in C(x^*) : \langle y, \nabla^2_{xx} L(x^*, \lambda^*) y \rangle > 0$$

# Lagrange function for inequality constraints

Combining two possible cases, we can If  $x^*$  is a local minimum of the problem described above, then there exists write down the general conditions for the a unique Lagrange multiplier  $\lambda^*$  such that: problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

$$L(x,\lambda) = f(x) + \lambda g(x)$$

The classical Karush-Kuhn-Tucker first and second-order optimality conditions for a local minimizer  $x^*$ , stated under

$$(2) \lambda^* \ge 0$$

 $(1) \nabla_x L(x^*, \lambda^*) = 0$ 

$$(3) \lambda^* g(x^*) = 0$$

$$(4) g(x^*) \le 0$$

$$\forall y \in C(x^*)$$

(5) 
$$\forall y \in C(x^*) : \langle y, \nabla^2_{xx} L(x^*, \lambda^*) y \rangle > 0$$

where  $C(x^*) = \{y \in \mathbb{R}^n | \nabla f(x^*)^\top y \leq 0 \text{ and } \forall i \in I(x^*) : \nabla g_i(x^*)^T y \leq 0 \}$ 

some regularity conditions, can be

written as follows.

## Lagrange function for inequality constraints

Combining two possible cases, we can If  $x^*$  is a local minimum of the problem described above, then there exists write down the general conditions for the a unique Lagrange multiplier  $\lambda^*$  such that: problem:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

 $L(x,\lambda) = f(x) + \lambda g(x)$ 

$$L(x,\lambda) = f(x) + \lambda g(x)$$
  
The classical Karush-Kuhn-Tucke

The classical Karush-Kuhn-Tucker first and second-order optimality conditions for a local minimizer 
$$x^*$$
, stated under

some regularity conditions, can be

written as follows.

(2)  $\lambda^* > 0$ (3)  $\lambda^* q(x^*) = 0$ 

 $(1) \nabla_x L(x^*, \lambda^*) = 0$ 

 $(4) \ q(x^*) < 0$ 

 $I(x^*) = \{i \mid q_i(x^*) = 0\}$ 

(5)  $\forall y \in C(x^*) : \langle y, \nabla_{xx}^2 L(x^*, \lambda^*) y \rangle > 0$ 

where  $C(x^*) = \{y \in \mathbb{R}^n | \nabla f(x^*)^\top y \leq 0 \text{ and } \forall i \in I(x^*) : \nabla g_i(x^*)^T y \leq 0 \}$ 

### **General formulation**

$$f_0(x) o \min_{x \in \mathbb{R}^n}$$
 s.t.  $f_i(x) \leq 0, \ i=1,\ldots,m$   $h_i(x) = 0, \ i=1,\ldots,p$ 

This formulation is a general problem of mathematical programming.

The solution involves constructing a Lagrange function:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$



Let  $x^*$ ,  $(\lambda^*, \nu^*)$  be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem  $p^*$  is equal to the optimal value for the dual problem  $d^*$ ). Let also the functions  $f_0, f_i, h_i$  be differentiable.

•  $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ 



Let  $x^*$ ,  $(\lambda^*, \nu^*)$  be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem  $p^*$  is equal to the optimal value for the dual problem  $d^*$ ). Let also the functions  $f_0, f_i, h_i$  be differentiable.

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu} L(x^*, \lambda^*, \nu^*) = 0$

Let  $x^*$ ,  $(\lambda^*, \nu^*)$  be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem  $p^*$  is equal to the optimal value for the dual problem  $d^*$ ). Let also the functions  $f_0, f_i, h_i$  be differentiable.

• 
$$\nabla_x L(x^*, \lambda^*, \nu^*) = 0$$

- $\nabla_{\nu}L(x^*, \lambda^*, \nu^*) = 0$
- $\lambda_i^* > 0, i = 1, \dots, m$

Let  $x^*$ ,  $(\lambda^*, \nu^*)$  be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem  $p^*$  is equal to the optimal value for the dual problem  $d^*$ ). Let also the functions  $f_0, f_i, h_i$  be differentiable.

• 
$$\nabla_x L(x^*, \lambda^*, \nu^*) = 0$$

- $\nabla_{\nu} L(x^*, \lambda^*, \nu^*) = 0$
- $\lambda_i^* > 0, i = 1, \dots, m$
- $\lambda_i^* f_i(x^*) = 0, i = 1, \dots, m$



Let  $x^*$ .  $(\lambda^*, \nu^*)$  be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem  $p^*$  is equal to the optimal value for the dual problem  $d^*$ ). Let also the functions  $f_0, f_i, h_i$  be differentiable.

• 
$$\nabla_x L(x^*, \lambda^*, \nu^*) = 0$$

• 
$$\nabla_{\nu} L(x^*, \lambda^*, \nu^*) = 0$$

• 
$$\lambda_i^* > 0, i = 1, \dots, m$$

• 
$$\lambda_i^* f_i(x^*) = 0, i = 1, \dots, m$$

$$\lambda_i^* f_i(x^*) = 0, i = 1, \dots, m$$

• 
$$f_i(x^*) \leq 0, i = 1, \dots, m$$



These conditions are needed to make KKT solutions the necessary conditions. Some of them even turn necessary conditions into sufficient (for example, Slater's). Moreover, if you have regularity, you can write down necessary second order conditions  $\langle y, \nabla^2_{xx} L(x^*, \lambda^*, \nu^*) y \rangle \geq 0$  with semi-definite hessian of Lagrangian.

• Slater's condition. If for a convex problem (i.e., assuming minimization,  $f_0$ ,  $f_i$  are convex and  $h_i$  are affine), there exists a point x such that h(x) = 0 and  $f_i(x) < 0$  (existence of a strictly feasible point), then we have a zero duality gap and KKT conditions become necessary and sufficient.

**♥ ೧ Ø** 

These conditions are needed to make KKT solutions the necessary conditions. Some of them even turn necessary conditions into sufficient (for example, Slater's). Moreover, if you have regularity, you can write down necessary second order conditions  $\langle y, \nabla^2_{xx} L(x^*, \lambda^*, \nu^*) y \rangle \geq 0$  with semi-definite hessian of Lagrangian.

- Slater's condition. If for a convex problem (i.e., assuming minimization,  $f_0$ ,  $f_i$  are convex and  $h_i$  are affine), there exists a point x such that h(x) = 0 and  $f_i(x) < 0$  (existence of a strictly feasible point), then we have a zero duality gap and KKT conditions become necessary and sufficient.
- Linearity constraint qualification. If  $f_i$  and  $h_i$  are affine functions, then no other condition is needed.



These conditions are needed to make KKT solutions the necessary conditions. Some of them even turn necessary conditions into sufficient (for example, Slater's). Moreover, if you have regularity, you can write down necessary second order conditions  $\langle y, \nabla^2_{xx} L(x^*, \lambda^*, \nu^*) y \rangle \geq 0$  with *semi-definite* hessian of Lagrangian.

- Slater's condition. If for a convex problem (i.e., assuming minimization,  $f_0$ ,  $f_i$  are convex and  $h_i$  are affine), there exists a point x such that h(x) = 0 and  $f_i(x) < 0$  (existence of a strictly feasible point), then we have a zero duality gap and KKT conditions become necessary and sufficient.
- Linearity constraint qualification. If  $f_i$  and  $h_i$  are affine functions, then no other condition is needed.
- Linear independence constraint qualification. The gradients of the active inequality constraints and the gradients of the equality constraints are linearly independent at  $x^*$ .



These conditions are needed to make KKT solutions the necessary conditions. Some of them even turn necessary conditions into sufficient (for example, Slater's). Moreover, if you have regularity, you can write down necessary second order conditions  $\langle y, \nabla^2_{xx} L(x^*, \lambda^*, \nu^*) y \rangle \geq 0$  with semi-definite hessian of Lagrangian.

- Slater's condition. If for a convex problem (i.e., assuming minimization,  $f_0$ ,  $f_i$  are convex and  $h_i$  are affine), there exists a point x such that h(x) = 0 and  $f_i(x) < 0$  (existence of a strictly feasible point), then we have a zero duality gap and KKT conditions become necessary and sufficient.
- Linearity constraint qualification. If  $f_i$  and  $h_i$  are affine functions, then no other condition is needed.
- Linear independence constraint qualification. The gradients of the active inequality constraints and the gradients of the equality constraints are linearly independent at  $x^*$ .
- For other examples, see wiki.



#### i Subdifferential form of KKT

Let X be a linear normed space, and let  $f_j: X \to \mathbb{R}$ ,  $j=0,1,\ldots,m$ , be convex proper (it never takes on the value  $-\infty$  and also is not identically equal to  $\infty$ ) functions. Consider the problem

$$f_0(x) o \min_{x \in X}$$
  
s.t.  $f_j(x) \le 0, \ j = 1, \dots, m$ 

Let  $x^* \in X$  be a minimum in problem above and the functions  $f_j$ ,  $j=0,1,\ldots,m$ , be continuous at the point  $x^*$ . Then there exist numbers  $\lambda_j \geq 0$ ,  $j=0,1,\ldots,m$ , such that

$$\sum_{j=0}^{m} \lambda_j = 1,$$

$$j(x^*) = 0, \quad j = 1, \dots, m,$$

$$0 \in \sum_{j=0}^{m} \lambda_j \partial f_j(x^*).$$

#### **Proof**

1. Consider the function

$$f(x) = \max\{f_0(x) - f_0(x^*), f_1(x), \dots, f_m(x)\}.$$

The point  $x^*$  is a global minimum of this function. Indeed, if at some point  $x_e \in X$  the inequality  $f(x_e) < 0$  were satisfied, it would imply that  $f_0(x_e) < f_0(x^*)$  and  $f_j(x_e) < 0$ ,  $j = 1, \ldots, m$ , contradicting the minimality of  $x^*$  in problem above.



#### **Proof**

1. Consider the function

$$f(x) = \max\{f_0(x) - f_0(x^*), f_1(x), \dots, f_m(x)\}.$$

The point  $x^*$  is a global minimum of this function. Indeed, if at some point  $x_e \in X$  the inequality  $f(x_e) < 0$  were satisfied, it would imply that  $f_0(x_e) < f_0(x^*)$  and  $f_j(x_e) < 0$ ,  $j = 1, \ldots, m$ , contradicting the minimality of  $x^*$  in problem above.

2. Then, from Fermat's theorem in subdifferential form, it follows that

$$0 \in \partial f(x^*).$$



#### **Proof**

1. Consider the function

$$f(x) = \max\{f_0(x) - f_0(x^*), f_1(x), \dots, f_m(x)\}.$$

The point  $x^*$  is a global minimum of this function. Indeed, if at some point  $x_e \in X$  the inequality  $f(x_e) < 0$  were satisfied, it would imply that  $f_0(x_e) < f_0(x^*)$  and  $f_j(x_e) < 0, \ j=1,\ldots,m$ , contradicting the minimality of  $x^*$  in problem above.

Then, from Fermat's theorem in subdifferential form, it follows that

$$0 \in \partial f(x^*).$$

3. By the Dubovitskii-Milyutin theorem, we have

$$\partial f(x^*) = \mathsf{conv} \left( igcup_{j \in I} \partial f_j(x^*) 
ight),$$

where  $I = \{0\} \cup \{j : f_j(x^*) = 0, 1 \le j \le m\}.$ 



#### **Proof**

1. Consider the function

$$f(x) = \max\{f_0(x) - f_0(x^*), f_1(x), \dots, f_m(x)\}.$$

The point  $x^*$  is a global minimum of this function. Indeed, if at some point  $x_e \in X$  the inequality  $f(x_e) < 0$  were satisfied, it would imply that  $f_0(x_e) < f_0(x^*)$  and  $f_j(x_e) < 0, \ j=1,\ldots,m$ , contradicting the minimality of  $x^*$  in problem above.

2. Then, from Fermat's theorem in subdifferential form, it follows that

$$0 \in \partial f(x^*)$$
.

3. By the Dubovitskii-Milyutin theorem, we have

$$\partial f(x^*) = \mathsf{conv} \left( igcup_{j \in I} \partial f_j(x^*) 
ight),$$

where  $I = \{0\} \cup \{j : f_j(x^*) = 0, 1 \le j \le m\}.$ 

4. Therefore, there exist  $g_j \in \partial f_j(x^*)$ ,  $j \in I$ , such that

$$\sum_{j \in I} \lambda_j g_j = 0, \quad \sum_{j \in I} \lambda_j = 1, \quad \lambda_j \ge 0, \quad j \in I.$$

It remains to set  $\lambda_j = 0$  for  $j \notin I$ .

Optimization with inequality constraints

$$\min \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{a}^T \mathbf{x} = b.$$



$$\min \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{a}^T \mathbf{x} = b.$$

### Solution

Lagrangian:



$$\min \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{a}^T \mathbf{x} = b.$$

### Solution

Lagrangian:

$$L(\mathbf{x}, \nu) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \nu (\mathbf{a}^T \mathbf{x} - b)$$

$$\min \frac{1}{2} ||\mathbf{x} - \mathbf{y}||^2$$
, s.t.  $\mathbf{a}^T \mathbf{x} = b$ .

### Solution

Lagrangian:

$$L(\mathbf{x}, \nu) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \nu (\mathbf{a}^T \mathbf{x} - b)$$

Derivative of L with respect to  $\mathbf{x}$ :

$$\frac{\partial L}{\partial \mathbf{x}} = \mathbf{x} - \mathbf{y} + \nu \mathbf{a} = 0, \quad \mathbf{x} = \mathbf{y} - \nu \mathbf{a}$$

$$\min \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{a}^T \mathbf{x} = b.$$

#### Solution

Lagrangian:

$$L(\mathbf{x}, \nu) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \nu (\mathbf{a}^T \mathbf{x} - b)$$

Derivative of L with respect to  $\mathbf{x}$ :

$$\frac{\partial L}{\partial \mathbf{x}} = \mathbf{x} - \mathbf{y} + \nu \mathbf{a} = 0, \quad \mathbf{x} = \mathbf{y} - \nu \mathbf{a}$$

$$\mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{y} - \nu \mathbf{a}^T \mathbf{a}$$
  $\nu = \frac{\mathbf{a}^T \mathbf{y} - b}{\|\mathbf{a}\|^2}$ 

$$\min \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{a}^T \mathbf{x} = b.$$

#### Solution

Lagrangian:

$$L(\mathbf{x}, \nu) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \nu (\mathbf{a}^T \mathbf{x} - b)$$

Derivative of L with respect to  $\mathbf{x}$ :

$$\frac{\partial L}{\partial \mathbf{x}} = \mathbf{x} - \mathbf{y} + \nu \mathbf{a} = 0, \quad \mathbf{x} = \mathbf{y} - \nu \mathbf{a}$$

$$\mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{y} - \nu \mathbf{a}^T \mathbf{a}$$
  $\nu = \frac{\mathbf{a}^T \mathbf{y} - b}{\|\mathbf{a}\|^2}$ 

$$\mathbf{x} = \mathbf{y} - \frac{\mathbf{a}^T \mathbf{y} - b}{\|\mathbf{a}\|^2} \mathbf{a}$$

$$\min \frac{1}{2}\|x-y\|^2, \quad \text{s.t.} \quad x^\top 1 = 1, \quad x \geq 0. \quad x$$

$$\min \frac{1}{2} ||x - y||^2$$
, s.t.  $x^{\top} 1 = 1$ ,  $x \ge 0$ .  $x$ 

#### **KKT Conditions**

The Lagrangian is given by:

$$L = \frac{1}{2} ||x - y||^2 - \sum_{i} \lambda_i x_i + \nu(x^{\top} 1 - 1)$$



$$\min \frac{1}{2} ||x - y||^2$$
, s.t.  $x^{\top} 1 = 1$ ,  $x \ge 0$ .  $x$ 

#### **KKT Conditions**

The Lagrangian is given by:

$$L = \frac{1}{2} ||x - y||^2 - \sum_{i} \lambda_i x_i + \nu (x^{\top} 1 - 1)$$

Taking the derivative of L with respect to  $x_i$  and writing KKT yields:

•  $\frac{\partial L}{\partial x_i} = x_i - y_i - \lambda_i + \nu = 0$ 

$$\min \frac{1}{2} ||x - y||^2$$
, s.t.  $x^{\top} 1 = 1$ ,  $x \ge 0$ .  $x$ 

#### KKT Conditions

The Lagrangian is given by:

$$L = \frac{1}{2} ||x - y||^2 - \sum_{i} \lambda_i x_i + \nu (x^{\top} 1 - 1)$$

- $\frac{\bar{\partial}L}{\partial x_i} = x_i y_i \lambda_i + \nu = 0$   $\lambda_i x_i = 0$

$$\min \frac{1}{2} ||x - y||^2$$
, s.t.  $x^{\top} 1 = 1$ ,  $x \ge 0$ .  $x$ 

#### KKT Conditions

The Lagrangian is given by:

$$L = \frac{1}{2} ||x - y||^2 - \sum_{i} \lambda_i x_i + \nu (x^{\top} 1 - 1)$$

- $\frac{\bar{\partial}L}{\partial x_i} = x_i y_i \lambda_i + \nu = 0$   $\lambda_i x_i = 0$
- $\lambda_i > 0$

$$\min \frac{1}{2} ||x - y||^2$$
, s.t.  $x^{\top} 1 = 1$ ,  $x \ge 0$ .  $x$ 

#### **KKT Conditions**

The Lagrangian is given by:

$$L = \frac{1}{2} ||x - y||^2 - \sum_{i} \lambda_i x_i + \nu(x^{\top} 1 - 1)$$

- $\frac{\bar{\partial}L}{\partial x_i} = x_i y_i \lambda_i + \nu = 0$
- $\lambda_i x_i = 0$
- $\lambda_i \geq 0$
- $\bullet \ x^{\top} \stackrel{\frown}{1} = 1, \quad x \ge 0$

$$\min \frac{1}{2} ||x - y||^2$$
, s.t.  $x^{\top} 1 = 1$ ,  $x \ge 0$ .  $x$ 

#### **KKT Conditions**

The Lagrangian is given by:

$$L = \frac{1}{2} ||x - y||^2 - \sum_{i} \lambda_i x_i + \nu(x^{\top} 1 - 1)$$

- $\frac{\bar{\partial}L}{\partial x_i} = x_i y_i \lambda_i + \nu = 0$
- $\lambda_i x_i = 0$
- $\lambda_i \geq 0$
- $\bullet \ x^{\top} \stackrel{\frown}{1} = 1, \quad x \ge 0$

$$\min \frac{1}{2} ||x - y||^2$$
, s.t.  $x^{\top} 1 = 1$ ,  $x \ge 0$ .  $x$ 

#### KKT Conditions

The Lagrangian is given by:

$$L = \frac{1}{2} ||x - y||^2 - \sum_{i} \lambda_i x_i + \nu (x^{\top} 1 - 1)$$

Taking the derivative of L with respect to  $x_i$  and writing KKT yields:

- $\frac{\partial L}{\partial x_i} = x_i y_i \lambda_i + \nu = 0$ 
  - $\lambda_i x_i = 0$
  - $\lambda_i > 0$

  - $x^{\top} = 1$ . x > 0

# i Question

Solve the above conditions in  $O(n \log n)$  time.

$$\min \frac{1}{2} ||x - y||^2$$
, s.t.  $x^{\top} 1 = 1$ ,  $x \ge 0$ .  $x$ 

#### KKT Conditions

The Lagrangian is given by:

$$L = \frac{1}{2} ||x - y||^2 - \sum_{i} \lambda_i x_i + \nu(x^{\top} 1 - 1)$$

Taking the derivative of L with respect to  $x_i$  and writing KKT yields:

- $\frac{\bar{\partial}L}{\partial x_i} = x_i y_i \lambda_i + \nu = 0$   $\lambda_i x_i = 0$
- $\lambda_i > 0$ •  $x^{\top} = 1$ . x > 0

# i Question

Solve the above conditions in  $O(n \log n)$  time.



Solve the above conditions in O(n) time.

• Lecture on KKT conditions (very intuitive explanation) in the course "Elements of Statistical Learning" @ KTH.

- Lecture on KKT conditions (very intuitive explanation) in the course "Elements of Statistical Learning" @ KTH.
- One-line proof of KKT



- Lecture on KKT conditions (very intuitive explanation) in the course "Elements of Statistical Learning" @ KTH.
- One-line proof of KKT
- On the Second Order Optimality Conditions for Optimization Problems with Inequality Constraints

- Lecture on KKT conditions (very intuitive explanation) in the course "Elements of Statistical Learning" @ KTH.
- One-line proof of KKT
- On the Second Order Optimality Conditions for Optimization Problems with Inequality Constraints
- On Second Order Optimality Conditions in Nonlinear Optimization





- Lecture on KKT conditions (very intuitive explanation) in the course "Elements of Statistical Learning" @ KTH.
- One-line proof of KKT
- On the Second Order Optimality Conditions for Optimization Problems with Inequality Constraints
- On Second Order Optimality Conditions in Nonlinear Optimization
- Numerical Optimization by Jorge Nocedal and Stephen J. Wright.



